Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
507 result(s) for "Simian Acquired Immunodeficiency Syndrome - metabolism"
Sort by:
Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo
Long-lasting, latently infected resting CD4 + T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir 1 . Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect 2 – 9 . Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4 + T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication. Activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of antiretroviral-therapy-treated humanized mice and rhesus macaques.
Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques
Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.
Liver biopsies obtained throughout SIV infection reveal evolving interferon stimulated protein expression within distinct monocyte/macrophage subsets
Liver dysfunction is more common and more severe among people with HIV than in the general population. Our previous transcriptomic analysis identified an increased hepatic type-1 interferon (IFN-1) response in simian immunodeficiency virus (SIV) infected rhesus macaques, including pronounced upregulation of the IFN-1 stimulated gene product MX1. Here, we interrogated the role of different cell types in the IFN-1 response, focusing on macrophage subsets. During the acute phase of SIV infection, the expression of MX1 in liver biopsies was elevated in the resident macrophage Kupffer cells (KCs, CD163 + CD206+) as well as liver sinusoidal endothelial cells (LSECs, CD163– CD206+). Chronic infection was associated with increased MX1 expression both within KCs and the recruited monocyte-derived macrophages (MdMs, CD163 + CD206–) although the KCs were associated with the highest MX1 expression levels. We explored factors in the liver potentially associated with the macrophage IFN-1 response: 1) SIV DNA load, 2) bacterial DNA load (assessed via SIV DNA and 16S bacterial DNA qPCR, respectively), and 3) acute-phase hepatocyte lipid accumulation (steatosis). Both SIV and bacteria were elevated during chronic infection and directly correlated with MdM frequency. KC frequency did not correlate with SIV load but inversely correlated with bacterial load and also correlated directly with hepatocyte microvesicular steatosis in acute infection. Hepatocytes expressed variable levels of MX1 during acute and chronic infection. Overall, our data identify MdMs, LSECs and KCs as contributors to the heightened expression of MX1 in the liver during SIV infection. KCs express the highest levels of MX1 and therefore represent a potential target to reduce liver inflammation in people with HIV.
The pathogenicity and multi-organ proteomic profiles of Mpox virus infection in SIVmac239-infected rhesus macaques
Mpox poses a heightened risk of severe disease and mortality among individuals with HIV, yet the molecular mechanisms and immunopathology underlying multi-organ damage caused by the mpox virus (MPXV), particularly in the context of HIV co-infection, remain poorly understood. Here, we observe increased MPXV replication, more extensive skin lesions, and impaired humoral and cellular immune responses in SIV-MPXV co-infected rhesus macaques compared to those infected with MPXV alone. Multi-organ proteomic and phosphoproteomic analyses reveals upregulation of proteins involved in immune and inflammatory pathways in skin lesions and across multiple organs, especially in immune-related tissues. Abnormal activation of DNA replication and cell cycle signaling pathways, which may contribute to enhanced viral replication, is evident in both MPXV and SIV-MPXV co-infected groups. CDK4/6 may present a potential therapeutic target to suppress MPXV replication. These comprehensive proteomic datasets offer valuable insights into the pathogenesis of MPXV in the context of SIV co-infection and support ongoing efforts to mitigate the impact of mpox. HIV infection is associated with increased risk of more severe Mpox, yet the underlying mechanisms aren’t well understood. Here, the authors reveal increased MPXV replication and immune dysfunction in SIV-MPXV co-infected rhesus macaques and, using proteomics and phosphoproteomics from multiple organs, identify involved pathways.
MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease
Recent studies have found that extracellular vesicles (EVs) play an important role in normal and disease processes. In the present study, we isolated and characterized EVs from the brains of rhesus macaques, both with and without simian immunodeficiency virus (SIV) induced central nervous system (CNS) disease. Small RNA sequencing revealed increased miR-21 levels in EVs from SIV encephalitic (SIVE) brains. In situ hybridization revealed increased miR-21 expression in neurons and macrophage/microglial cells/nodules during SIV induced CNS disease. In vitro culture of macrophages revealed that miR-21 is released into EVs and is neurotoxic when compared to EVs derived from miR-21-/- knockout animals. A mutation of the sequence within miR-21, predicted to bind TLR7, eliminates this neurotoxicity. Indeed miR-21 in EV activates TLR7 in a reporter cell line, and the neurotoxicity is dependent upon TLR7, as neurons isolated from TLR7-/- knockout mice are protected from neurotoxicity. Further, we show that EVs isolated from the brains of monkeys with SIV induced CNS disease activates TLR7 and were neurotoxic when compared to EVs from control animals. Finally, we show that EV-miR-21 induced neurotoxicity was unaffected by apoptosis inhibition but could be prevented by a necroptosis inhibitor, necrostatin-1, highlighting the actions of this pathway in a growing number of CNS disorders.
Maintenance of Intestinal Th17 Cells and Reduced Microbial Translocation in SIV-infected Rhesus Macaques Treated with Interleukin (IL)-21
In pathogenic HIV and SIV infections of humans and rhesus macaques (RMs), preferential depletion of CD4⁺ Th17 cells correlates with mucosal immune dysfunction and disease progression. Interleukin (IL)-21 promotes differentiation of Th17 cells, long-term maintenance of functional CD8⁺ T cells, and differentiation of memory B cells and antibody-secreting plasma cells. We hypothesized that administration of IL-21 will improve mucosal function in the context of pathogenic HIV/SIV infections. To test this hypothesis, we infected 12 RMs with SIV(mac239) and at day 14 post-infection treated six of them with rhesus rIL-21-IgFc. IL-21-treatment was safe and did not increase plasma viral load or systemic immune activation. Compared to untreated animals, IL-21-treated RMs showed (i) higher expression of perforin and granzyme B in total and SIV-specific CD8⁺ T cells and (ii) higher levels of intestinal Th17 cells. Remarkably, increased levels of Th17 cells were associated with reduced levels of intestinal T cell proliferation, microbial translocation and systemic activation/inflammation in the chronic infection. In conclusion, IL-21-treatment in SIV-infected RMs improved mucosal immune function through enhanced preservation of Th17 cells. Further preclinical studies of IL-21 may be warranted to test its potential use during chronic infection in conjunction with antiretroviral therapy.
Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a Mycobacterium tuberculosis/SIV coinfection model
Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.
Characterization of Nef expression in different brain regions of SIV-infected macaques
HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH), who now live longer due to viral suppression from combined anti-retroviral therapy (ART). Over the course of infection, HIV generates toxic viral proteins and induces inflammatory cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV Nef has been found in neurons of postmortem brain specimens from PWH. However, the source of Nef and its impact on neuronal cell homeostasis are still elusive. Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected macaques treated with ART also showed frequent Nef positive cells in the cerebellum and hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were positive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are not actively infected with SIV. Using cell specific markers, we observed Nef protein in microglia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive neurons, which are not permissive to SIV infection, but contained Nef protein. Further characterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apoptosis in the CNS neurons. Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected macaques and may contribute to neurological complications seen in PWH.
Macrophage- and CD4+ T cell-derived SIV differ in glycosylation, infectivity and neutralization sensitivity
The human immunodeficiency virus (HIV) envelope protein (Env) mediates viral entry into host cells and is the primary target for the humoral immune response. Env is extensively glycosylated, and these glycans shield underlying epitopes from neutralizing antibodies. The glycosylation of Env is influenced by the type of host cell in which the virus is produced. Thus, HIV is distinctly glycosylated by CD4 + T cells, the major target cells, and macrophages. However, the specific differences in glycosylation between viruses produced in these cell types have not been explored at the molecular level. Moreover, it remains unclear whether the production of HIV in CD4 + T cells or macrophages affects the efficiency of viral spread and resistance to neutralization. To address these questions, we employed the simian immunodeficiency virus (SIV) model. Glycan analysis implied higher relative levels of oligomannose-type N -glycans in SIV from CD4 + T cells (T-SIV) compared to SIV from macrophages (M-SIV), and the complex-type N -glycans profiles seem to differ between the two viruses. Notably, M-SIV demonstrated greater infectivity than T-SIV, even when accounting for Env incorporation, suggesting that host cell-dependent factors influence infectivity. Further, M-SIV was more efficiently disseminated by HIV binding cellular lectins. We also evaluated the influence of cell type-dependent differences on SIV’s vulnerability to carbohydrate binding agents (CBAs) and neutralizing antibodies. T-SIV demonstrated greater susceptibility to mannose-specific CBAs, possibly due to its elevated expression of oligomannose-type N -glycans. In contrast, M-SIV exhibited higher susceptibility to neutralizing sera in comparison to T-SIV. These findings underscore the importance of host cell-dependent attributes of SIV, such as glycosylation, in shaping both infectivity and the potential effectiveness of intervention strategies.