Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58,672
result(s) for
"Soil nutrients"
Sort by:
Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot
by
Wilcke, Wolfgang
,
Forrest, Matthew
,
Bendix, Jörg
in
Assembly
,
Biodiversity
,
Biodiversity hot spots
2021
• Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient.
• In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake.
• The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61–72% along the gradient.
• Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
Journal Article
Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations
2018
Aims The changes of nutrient limitation status for tree growth across a plantation chronosequence have great implications for plantation management. The underlying mechanisms for such a shift, however, have seldom been addressed. While plant nutrient use strategies would change in response to soil nutrient alteration, they may also create feedback on soil nutrient dynamics and thus plant nutrient limitation status. Methods We examined soil and foliar nutrients of larch (Larix kaempferi), the dominant timber species in Northeast China, across a plantation chronosequence. Results Total soil N increased but total soil P decreased across the chronosequence. Similarly, N concentrations in the green leaves were positively correlated, and P concentrations were negatively correlated with stand age. Foliar N:P ratios, N and P resorption efficiencies and PRE:NRE were positively correlated with stand age, indicating the shift from N-limitation to P-limitation across the chronosequence. P concentration in senesced leaves decreased and N:P ratios increased across the chronosequence, which has implications for decomposition and nutrient release. Conclusions Nutrient resorption, soil pH, biomass P sequestration and imbalanced inputs of N and P would contribute to the occurrence of P-limitation with increased stand age. Furthermore, adaptive fertilization management strategies should consider the shift of nutrient limitation patterns across the chronosequence.
Journal Article
Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data
2010
Inspired by previous studies that have indicated consistent or even well-constrained (relatively low variability) relations among carbon (C), nitrogen (N) and phosphorus (P) in soils, we have endeavored to explore general soil C:N:P ratios in China on a national scale, as well as the changing patterns of these ratios with soil depth, developmental stages and climate; we also attempted to determine if well-constrained C: N:P stoichiometrical ratios exist in China's soil. Based on an inventory data set of 2,384 soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, respectively, showing a C: N: P ratio of ~ 60: 5:1. C:N ratios showed relatively small variation among different climatic zones, soil orders, soil depth and weathering stages, while C:P and N:P ratios showed a high spatial heterogeneity and large variations in different climatic zones, soil orders, soil depth and weathering stages. No well-constrained C:N:P ratios were found for the entire soil depth in China. However, for the 0-10 cm organic-rich soil, which has the most active organism-environment interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively consistent C:P (136) and N: P (9.3) ratios, with a general C:N:P ratio of 134:9:1. Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be a good indicator of soil nutrient status during soil development.
Journal Article
Global changes alter plant multi-element stoichiometric coupling
2019
• Plant stoichiometric coupling among all elements is fundamental to maintaining growth-related ecosystem functions. However, our understanding of nutrient balance in response to global changes remains greatly limited to plant carbon : nitrogen : phosphorus (C : N : P) coupling.
• Here we evaluated nine element stoichiometric variations with one meta-analysis of 112 global change experiments conducted across global terrestrial ecosystems and one synthesis over 1900 species observations along natural environment gradients across China.
• We found that experimentally increased soil N and P respectively enhanced plant N : potassium (K), N : calcium (Ca) and N : magnesium (Mg), and P : K, P : Ca and P : Mg, and natural increases in soil N and P resulted in qualitatively similar responses. The ratios of N and P to base cations decreased both under experimental warming and with naturally increasing temperature. With decreasing precipitation, these ratios increased in experiments but decreased under natural environments. Based on these results, we propose a new stoichiometric framework in which all plant element contents and their coupling are not only affected by soil nutrient availability, but also by plant nutrient demand to maintain diverse functions under climate change.
• This study offers new insights into understanding plant stoichiometric variations across a full set of mineral elements under global changes.
Journal Article
Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period
by
Willems, Jaap
,
Rufino, Mariana C.
,
Bouwman, Lex
in
Africa
,
Agriculture
,
Agriculture - history
2013
Crop-livestock production systems are the largest cause of human alteration of the global nitrogen (N) and phosphorus (P) cycles. Our comprehensive spatially explicit inventory of N and P budgets in livestock and crop production systems shows that in the beginning of the 20th century, nutrient budgets were either balanced or surpluses were small; between 1900 and 1950, global soil N surplus almost doubled to 36 trillion grams (Tg)·y −1 and P surplus increased by a factor of 8 to 2 Tg·y −1 . Between 1950 and 2000, the global surplus increased to 138 Tg·y −1 of N and 11 Tg·y −1 of P. Most surplus N is an environmental loss; surplus P is lost by runoff or accumulates as residual soil P. The International Assessment of Agricultural Knowledge, Science, and Technology for Development scenario portrays a world with a further increasing global crop (+82% for 2000–2050) and livestock production (+115%); despite rapidly increasing recovery in crop (+35% N recovery and +6% P recovery) and livestock (+35% N and P recovery) production, global nutrient surpluses continue to increase (+23% N and +54% P), and in this period, surpluses also increase in Africa (+49% N and +236% P) and Latin America (+75% N and +120% P). Alternative management of livestock production systems shows that combinations of intensification, better integration of animal manure in crop production, and matching N and P supply to livestock requirements can effectively reduce nutrient flows. A shift in human diets, with poultry or pork replacing beef, can reduce nutrient flows in countries with intensive ruminant production.
Journal Article
Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits
by
Melo, Leônidas C. A.
,
Magriotis, Zuy M.
,
Trugilho, Paulo F.
in
Acidic soils
,
Adsorptivity
,
Agriculture
2017
Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars. The high ash content associated with alkaline chemical species such as KHCO3 and CaCO3, verified by XRD analysis, made chicken manure and coffee husk biochars potential liming agents for remediating acidic soils. High Ca and K contents in chicken manure and coffee husk biomass can significantly replace conventional sources of K (mostly imported in Brazil) and Ca, suggesting a high agronomic value for these biochars. High-ash biochars, such as chicken manure and coffee husk, produced at low-temperatures (350 and 450°C) exhibited high CEC values, which can be considered as a potential applicable material to increase nutrient retention in soil. Therefore, the agronomic value of the biochars in this study is predominantly regulated by the nutrient richness of the biomass, but an increase in pyrolysis temperature to 750°C can strongly decrease the adsorptive capacities of chicken manure and coffee husk biochars. A diagram of the agronomic potential and environmental benefits is presented, along with some guidelines to relate biochar properties with potential agronomic and environmental uses. Based on biochar properties, research needs are identified and directions for future trials are delineated.
Journal Article
C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors
by
Bui, Elisabeth N.
,
Henderson, Brent L.
in
Agronomy. Soil science and plant productions
,
analysis of variance
,
Animal, plant and microbial ecology
2013
AIMS: We estimate organic carbon (C): total nitrogen (N): total phosphorus (P) ratios in soils under Australia’s major native vegetation groups. METHODS: We use digital datasets for climate, soils, and vegetation created for the National Land and Water Resources Audit in 2001. Analysis-of-variance is used to investigate differences in nutrient ratios between ecosystems. Linear discriminant analysis and logistic regression are used to investigate the relative importance of climatic variables and soil nutrients in vegetation patterns. RESULTS: We find that the N:P and C:P ratios have a greater range of values than the C:N ratio, although major vegetation groups tend to show similar trends across all three ratios. Some apparently homeostatic groupings emerge: those with very low, low, medium, or high N:P and C:P. Tussock grasslands have very low soil N, N:P, and C:P, probably due to frequent burning. Eucalypt woodlands have low soil N:P and C:P ratios, although their total P level varies. Rainforests and Melaleuca forests have medium soil N:P and C:P ratios, although their total P level is different. Heathlands, tall open eucalypt forests, and shrublands occur on soils with low levels of total P, and high N:P and C:P ratios that reflect foliar nutrient ratios and recalcitrant litter. CONCLUSIONS: Certain plant communities have typical soil nutrient stoichiometries but there is no single Redfield-like ratio. Vegetation patterns largely reflect soil moisture but for several plant communities, eucalypt communities in particular, soil N and P (or N:P) also play a significant role. Soil N:P and the presence of Proteaceae appear indicative of nutrient constraints in ecosystems.
Journal Article
Towards a better understanding of soil nutrient dynamics and P and K uptake
2023
AimBalanced crop nutrition is key to improve nutrient use efficiency and reduce environmental impact of farming systems. We developed and tested a dynamic model to predict the uptake of P and K in long-term experiments to better understand how changes in soil nutrient pools affect nutrient availability in crop rotations.MethodsOur RC-KP model includes labile and stable pools for P and K, with separate labile pools for placed P and organic fertilizers including farm yard manure (FYM). Pool sizes and crop-specific relative uptake rates determined potential uptake. Actual crop uptake from labile pools was based on concepts developed by Janssen et al. (Geoderma 46:299-318, 1990). The model was calibrated on three long-term experiments from Kenia (Siaya), Germany (Hanninghof) and the United Kingdom (Broadbalk) to estimate parameter values for crop-specific relative uptake rates and site-specific relative transfer rates.ResultsThe model described N, P and K uptake accurately with a Nash-Sutcliff modelling efficiency of 0.6–0.9 and root mean squared errors of 2.6–3.4 kg P ha−1 and 14–20 kg K ha−1. Excluding organic labile pools did not affect model accuracy in Broadbalk in contrast to Hanninghof where Mg deficiencies affected crop uptakes in treatments without Mg or FYM.ConclusionsThis relatively simple model provides a novel approach to accurately estimate N, P and K uptake and explore short- and long-term effects of fertilizers in crop rotations. Interactions between limiting nutrients affecting actual nutrient uptake were captured well, providing new options to include N, P and K limitations in crop growth models.
Journal Article
Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution
by
Wang, Shuhua
,
Cao, Guojun
,
Wang, Lichun
in
Accumulation
,
Agricultural chemicals
,
Agricultural production
2019
In order to maintain high yields and protect the environment, the replacement of chemical fertilizers with organic ones has received increasing attention in recent years. A 2-year field experiment (2015-2016) was carried out to assess the effects of substituting equal amounts of mineral fertilizer with organic manure on the yield, dry matter (DM), and nitrogen (N) uptake of spring maize (Zea mays L.) and on the mineral N (Nmin) distribution in the soil profile. The treatments included chemical fertilizer; different amounts of maize straw, cow manure, and chicken manure; and an unfertilized control (CK). Compared with the chemical fertilizer treatments, equal amounts of substitutions with cow manure or chicken manure increased production, and a 25% nutrient substitution resulted in the best yield increase. Straw return had no effect on maize production, and 100% straw return resulted in reduced production. The N accumulation and DM content both exhibited a slow-fast-slow growth trend throughout the various growth stages, and the average N uptake and DM accumulation in response to the treatments followed the order of chicken manure > cow manure > chemical fertilizer > straw return > CK. The Nmin content in the profile not only increased as the Nmin application rate increased but also showed greater increases at certain depths than at the surface, indicating that excessive N led to leaching. These results suggest that an appropriate proportion of organic substitution not only provides enough nutrients but also improves the soil environment and leads to increased yields. This technique represents a practical method of continuously increasing production and reducing the risk of N leaching.
Journal Article
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
by
Berkhout, Ezra
,
Walsh, Markus G.
,
Hengl, Tomislav
in
Africa
,
Agricultural development
,
Agriculture
2017
Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms—random forest and gradient boosting, as implemented in R packages ranger and xgboost—and then used to generate predictions in a fully-optimized computing system. Cross-validation revealed that apart from S, P and B, significant models can be produced for most targeted nutrients (R-square between 40–85%). Further comparison with OFRA field trial database shows that soil nutrients are indeed critical for agricultural development, with Mn, Zn, Al, B and Na, appearing as the most important nutrients for predicting crop yield. A limiting factor for mapping nutrients using the existing point data in Africa appears to be (1) the high spatial clustering of sampling locations, and (2) missing more detailed parent material/geological maps. Logical steps towards improving prediction accuracies include: further collection of input (training) point samples, further harmonization of measurement methods, addition of more detailed covariates specific to Africa, and implementation of a full spatio-temporal statistical modeling framework.
Journal Article