Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,966 result(s) for "Squamous Cell Carcinoma of Head and Neck - genetics"
Sort by:
Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma
Alpelisib selectively inhibits the p110α catalytic subunit of PI3Kα and is approved for treatment of breast cancers harboring canonical PIK3CA mutations. In head and neck squamous cell carcinoma (HNSCC), 63% of PIK3CA mutations occur at canonical hotspots. The oncogenic role of the remaining 37% of PIK3CA noncanonical mutations is incompletely understood. We report a patient with HNSCC with a noncanonical PIK3CA mutation (Q75E) who exhibited a durable (12 months) response to alpelisib in a phase II clinical trial. Characterization of all 32 noncanonical PIK3CA mutations found in HNSCC using several functional and phenotypic assays revealed that the majority (69%) were activating, including Q75E. The oncogenic impact of these mutations was validated in 4 cellular models, demonstrating that their activity was lineage independent. Further, alpelisib exhibited antitumor effects in a xenograft derived from a patient with HNSCC containing an activating noncanonical PIK3CA mutation. Structural analyses revealed plausible mechanisms for the functional phenotypes of the majority of the noncanonical PIK3CA mutations. Collectively, these findings highlight the importance of characterizing the function of noncanonical PIK3CA mutations and suggest that patients with HNSCC whose tumors harbor activating noncanonical PIK3CA mutations may benefit from treatment with PI3Kα inhibitors.
Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors
Identifying tumor antigen-specific T cells from cancer patients has important implications for immunotherapy diagnostics and therapeutics. Here, we show that CD103 + CD39 + tumor-infiltrating CD8 T cells (CD8 TIL) are enriched for tumor-reactive cells both in primary and metastatic tumors. This CD8 TIL subset is found across six different malignancies and displays an exhausted tissue-resident memory phenotype. CD103 + CD39 + CD8 TILs have a distinct T-cell receptor (TCR) repertoire, with T-cell clones expanded in the tumor but present at low frequencies in the periphery. CD103 + CD39 + CD8 TILs also efficiently kill autologous tumor cells in a MHC-class I-dependent manner. Finally, higher frequencies of CD103 + CD39 + CD8 TILs in patients with head and neck cancer are associated with better overall survival. Our data thus describe an approach for detecting tumor-reactive CD8 TILs that will help define mechanisms of existing immunotherapy treatments, and may lead to future adoptive T-cell cancer therapies. Identifying and enumerating tumor-specific CD8 T cells are important for assessing cancer prognosis and therapy efficacy. Here the authors show that CD39 and CD103 mark a subset of tumor-infiltrating CD8 T cells that are tumor-reactive and exhibit characteristics of exhausted or tissue-resident memory T cells.
Deciphering the cells of origin of squamous cell carcinomas
Squamous cell carcinomas (SCCs) are among the most prevalent human cancers. SCC comprises a wide range of tumours originated from diverse anatomical locations that share common genetic mutations and expression of squamous differentiation markers. SCCs arise from squamous and non-squamous epithelial tissues. Here, we discuss the different studies in which the cell of origin of SCCs has been uncovered by expressing oncogenes and/or deleting tumour suppressor genes in the different cell lineages that compose these epithelia. We present evidence showing that the squamous differentiation phenotype of the tumour depends on the type of mutated oncogene and the cell of origin, which dictate the competence of the cells to initiate SCC formation, as well as on the aggressiveness and invasive properties of these tumours.
The molecular landscape of head and neck cancer
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.
B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma
Current immunotherapy paradigms aim to reinvigorate CD8 + T cells, but the contribution of humoral immunity to antitumor immunity remains understudied. Here, we demonstrate that in head and neck squamous cell carcinoma (HNSCC) caused by human papillomavirus infection (HPV + ), patients have transcriptional signatures of germinal center (GC) tumor infiltrating B cells (TIL-Bs) and spatial organization of immune cells consistent with tertiary lymphoid structures (TLS) with GCs, both of which correlate with favorable outcome. GC TIL-Bs in HPV + HNSCC are characterized by distinct waves of gene expression consistent with dark zone, light zone and a transitional state of GC B cells. Semaphorin 4a expression is enhanced on GC TIL-Bs present in TLS of HPV + HNSCC and during the differentiation of TIL-Bs. Our study suggests that therapeutics to enhance TIL-B responses in HNSCC should be prioritized in future studies to determine if they can complement current T cell mediated immunotherapies. Recent studies have highlighted the importance of B cells and tertiary lymphoid structures (TLS) in the modulation of anti-tumor immune responses. Here, the authors characterize how HPV status influences the phenotype of tumor infiltrating B cells in patients with head and neck squamous cell carcinoma and demonstrate that TLS with germinal centres are associated with better survival.
Investigating immune and non-immune cell interactions in head and neck tumors by single-cell RNA sequencing
Head and neck squamous cell carcinoma (HNSCC) is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). To enable the development of more efficacious therapies, we aim to study the heterogeneity, signatures of unique cell populations, and cell-cell interactions of non-immune and immune cell populations in 6 human papillomavirus (HPV) + and 12 HPV – HNSCC patient tumor and matched peripheral blood specimens using single-cell RNA sequencing. Using this dataset of 134,606 cells, we show cell type-specific signatures associated with inflammation and HPV status, describe the negative prognostic value of fibroblasts with elastic differentiation specifically in the HPV + TME, predict therapeutically targetable checkpoint receptor-ligand interactions, and show that tumor-associated macrophages are dominant contributors of PD-L1 and other immune checkpoint ligands in the TME. We present a comprehensive single-cell view of cell-intrinsic mechanisms and cell-cell communication shaping the HNSCC microenvironment. The tumor microenvironment (TME) has an important role in Head and Neck Squamous Cell Carcinoma (HNSCC) progression. Here, using single-cell RNA sequencing and multiplexed imaging, the authors report the cellular complexity of the TME in patients with HNSCC, exploring inflammatory status, stromal heterogeneity and immune checkpoint receptor-ligand interactions.
Clinical update on head and neck cancer: molecular biology and ongoing challenges
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours’ aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial
Chemoradiotherapy is the standard of care for unresected locally advanced squamous cell carcinoma of the head and neck. We aimed to assess if addition of avelumab (anti-PD-L1) to chemoradiotherapy could improve treatment outcomes for this patient population. In this randomised, double-blind, placebo-controlled, phase 3 study, patients were recruited from 196 hospitals and cancer treatment centres in 22 countries. Patients aged 18 years or older, with histologically confirmed, previously untreated, locally advanced squamous cell carcinoma of the oropharynx, hypopharynx, larynx, or oral cavity (unselected for PD-L1 status), an Eastern Cooperative Oncology Group performance status score of 0 or 1, and who could receive chemoradiotherapy were eligible. Patients were randomly assigned (1:1) centrally by means of stratified block randomisation with block size four (stratified by human papillomavirus status, tumour stage, and nodal stage, and done by an interactive response technology system) to receive 10 mg/kg avelumab intravenously every 2 weeks plus chemoradiotherapy (100 mg/m2 cisplatin every 3 weeks plus intensity-modulated radiotherapy with standard fractionation of 70 Gy [35 fractions during 7 weeks]; avelumab group) or placebo plus chemoradiotherapy (placebo group). This was preceded by a single 10 mg/kg avelumab or placebo lead-in dose given 7 days previously and followed by 10 mg/kg avelumab or placebo every 2 weeks maintenance therapy for up to 12 months. The primary endpoint was progression-free survival by investigator assessment per modified Response Evaluation Criteria in Solid Tumors, version 1.1, in all randomly assigned patients. Adverse events were assessed in patients who received at least one dose of avelumab or placebo. This trial is registered with ClinicalTrials.gov, NCT02952586. Enrolment is no longer ongoing, and the trial has been discontinued. Between Dec 12, 2016, and Jan 29, 2019, from 907 patients screened, 697 patients were randomly assigned to the avelumab group (n=350) or the placebo group (n=347). Median follow-up for progression-free survival was 14·6 months (IQR 8·5–19·6) in the avelumab group and 14·8 months (11·6–18·8) in the placebo group. Median progression-free survival was not reached (95% CI 16·9 months–not estimable) in the avelumab group and not reached (23·0 months–not estimable) in the placebo group (stratified hazard ratio 1·21 [95% CI 0·93–1·57] favouring the placebo group; one-sided p=0·92). The most common grade 3 or worse treatment-related adverse events were neutropenia (57 [16%] of 348 patients in the avelumab group vs 52 [15%] of 344 patients in the placebo group), mucosal inflammation (50 [14%] vs 45 [13%]), dysphagia (49 [14%] vs 47 [14%]), and anaemia (41 [12%] vs 44 [13%]). Serious treatment-related adverse events occurred in 124 (36%) patients in the avelumab group and in 109 (32%) patients in the placebo group. Treatment-related deaths occurred in two (1%) patients in the avelumab group (due to general disorders and site conditions, and vascular rupture) and one (<1%) in the placebo group (due to acute respiratory failure). The primary objective of prolonging progression-free survival with avelumab plus chemoradiotherapy followed by avelumab maintenance in patients with locally advanced squamous cell carcinoma of the head and neck was not met. These findings may help inform the design of future trials investigating the combination of immune checkpoint inhibitors plus CRT. Pfizer and Merck KGaA, Darmstadt, Germany.
Immunogenic neoantigens derived from gene fusions stimulate T cell responses
Anti-tumor immunity is driven by self versus non-self discrimination. Many immunotherapeutic approaches to cancer have taken advantage of tumor neoantigens derived from somatic mutations. Here, we demonstrate that gene fusions are a source of immunogenic neoantigens that can mediate responses to immunotherapy. We identified an exceptional responder with metastatic head and neck cancer who experienced a complete response to immune checkpoint inhibitor therapy, despite a low mutational load and minimal pre-treatment immune infiltration in the tumor. Using whole-genome sequencing and RNA sequencing, we identified a novel gene fusion and demonstrated that it produces a neoantigen that can specifically elicit a host cytotoxic T cell response. In a cohort of head and neck tumors with low mutation burden, minimal immune infiltration and prevalent gene fusions, we also identified gene fusion-derived neoantigens that generate cytotoxic T cell responses. Finally, analyzing additional datasets of fusion-positive cancers, including checkpoint-inhibitor-treated tumors, we found evidence of immune surveillance resulting in negative selective pressure against gene fusion-derived neoantigens. These findings highlight an important class of tumor-specific antigens and have implications for targeting gene fusion events in cancers that would otherwise be less poised for response to immunotherapy, including cancers with low mutational load and minimal immune infiltration.Fusion proteins in cancers with low mutational burden represent functional neoantigens that elicit T cell activation and mediate responses to immunotherapy.
Pan-cancer deconvolution of tumour composition using DNA methylation
The nature and extent of immune cell infiltration into solid tumours are key determinants of therapeutic response. Here, using a DNA methylation-based approach to tumour cell fraction deconvolution, we report the integrated analysis of tumour composition and genomics across a wide spectrum of solid cancers. Initially studying head and neck squamous cell carcinoma, we identify two distinct tumour subgroups: ‘immune hot’ and ‘immune cold’, which display differing prognosis, mutation burden, cytokine signalling, cytolytic activity and oncogenic driver events. We demonstrate the existence of such tumour subgroups pan-cancer, link clonal-neoantigen burden to cytotoxic T-lymphocyte infiltration, and show that transcriptional signatures of hot tumours are selectively engaged in immunotherapy responders. We also find that treatment-naive hot tumours are markedly enriched for known immune-resistance genomic alterations, potentially explaining the heterogeneity of immunotherapy response and prognosis seen within this group. Finally, we define a catalogue of mediators of active antitumour immunity, deriving candidate biomarkers and potential targets for precision immunotherapy. Determining the extent of immune cell infiltration into solid tumours is essential for adequate therapeutic response. Here the authors develop a DNA methylation-based approach for tumour cell fraction deconvolution and analyse tumour composition and genomics across a wide spectrum of solid cancers.