Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,890
result(s) for
"Telomerase - metabolism"
Sort by:
mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells
2015
Cancer cells harboring oncogenic
BRaf
mutants, but not oncogenic
KRas
mutants, are sensitive to MEK inhibitors (MEKi). The mechanism underlying the intrinsic resistance to MEKi in KRas-mutant cells is under intensive investigation. Here, we pursued this mechanism by live imaging of extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin complex 1 (mTORC1) activities in oncogenic KRas or BRaf-mutant cancer cells. We established eight cancer cell lines expressing Förster resonance energy transfer (FRET) biosensors for ERK activity and S6K activity, which was used as a surrogate marker for mTORC1 activity. Under increasing concentrations of MEKi, ERK activity correlated linearly with the cell growth rate in BRaf-mutant cancer cells, but not KRas-mutant cancer cells. The administration of PI3K inhibitors resulted in a linear correlation between ERK activity and cell growth rate in KRas-mutant cancer cells. Intriguingly, mTORC1 activity was correlated linearly with the cell growth rate in both BRaf-mutant cancer cells and KRas-mutant cancer cells. These observations suggested that mTORC1 activity had a pivotal role in cell growth and that the mTORC1 activity was maintained primarily by the ERK pathway in BRaf-mutant cancer cells and by both the ERK and PI3K pathways in KRas-mutant cancer cells. FRET imaging revealed that MEKi inhibited mTORC1 activity with slow kinetics, implying transcriptional control of mTORC1 activity by ERK. In agreement with this observation, MEKi induced the expression of negative regulators of mTORC1, including TSC1, TSC2 and Deptor, which occurred more significantly in BRaf-mutant cells than in KRas-mutant cells. These findings suggested that the suppression of mTORC1 activity and induction of negative regulators of mTORC1 in cancer cells treated for at least 1 day could be used as surrogate markers for the MEKi sensitivity of cancer cells.
Journal Article
Telomeres and telomerase: three decades of progress
2019
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.In this Timeline article, Shay and Wright provide a historical account of progress in our understanding of telomeres (the ends of linear chromosomes) and telomerase (the primary enzyme that maintains and extends telomere lengths). Their perspective covers seminal moments from the early discoveries through to our latest understanding of the roles of telomeres and telomerase in ageing, diverse human diseases and gene regulation.
Journal Article
Structure of human telomerase holoenzyme with bound telomeric DNA
2021
Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication
1
. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease
2
. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture
3
, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A–H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.
A high-resolution structure of human telomerase bound to telomeric DNA reveals details of telomerase assembly and its active site, and sheds light on how mutations alter telomerase function.
Journal Article
Cryo-EM structure of substrate-bound human telomerase holoenzyme
2018
The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein–RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.
A cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme, which lengthens the protective caps on chromosomes.
Journal Article
RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting
by
He, Chuan
,
Carr, Steven A.
,
Ting, Alice Y.
in
AlkB Homolog 5, RNA Demethylase - genetics
,
AlkB Homolog 5, RNA Demethylase - metabolism
,
Biochemistry
2020
RNA–protein interactions underlie a wide range of cellular processes. Improved methods are needed to systematically map RNA–protein interactions in living cells in an unbiased manner. We used two approaches to target the engineered peroxidase APEX2 to specific cellular RNAs for RNA-centered proximity biotinylation of protein interaction partners. Both an MS2-MCP system and an engineered CRISPR-Cas13 system were used to deliver APEX2 to the human telomerase RNA hTR with high specificity. One-minute proximity biotinylation captured candidate binding partners for hTR, including more than a dozen proteins not previously linked to hTR. We validated the interaction between hTR and the N⁶-methyladenosine (m⁶A) demethylase ALKBH5 and showed that ALKBH5 is able to erase the m⁶A modification on endogenous hTR. ALKBH5 also modulates telomerase complex assembly and activity. MS2- and Cas13-targeted APEX2 may facilitate the discovery of novel RNA–protein interactions in living cells.
Journal Article
Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players
2019
Long-lived species Homo sapiens have evolved robust protection mechanisms against cancer by repressing telomerase and maintaining short telomeres, thereby delaying the onset of the majority of cancer types until post-reproductive age. Indeed, telomerase is silent in most differentiated human cells, predominantly due to the transcriptional repression of its catalytic component
telomerase reverse transcriptase (TERT)
gene. The lack of telomerase/TERT expression leads to progressive telomere erosion in dividing human cells, whereas critically shortened telomere length induces a permanent growth arrest stage named replicative senescence. TERT/telomerase activation has been experimentally shown to be essential to cellular immortalization and malignant transformation by stabilizing telomere length and erasing the senescence barrier. Consistently, TERT expression/telomerase activity is detectable in up to 90% of human primary cancers. Compelling evidence has also accumulated that TERT contributes to cancer development and progression via multiple activities beyond its canonical telomere-lengthening function. Given these key roles of telomerase and TERT in oncogenesis, great efforts have been made to decipher mechanisms underlying telomerase activation and TERT induction. In the last two decades since the
TERT
gene and promoter were cloned, the derepression of the
TERT
gene has been shown to be achieved typically at a transcriptional level through dysregulation of oncogenic factors or signaling, post-transcriptional/translational regulation and genomic amplification. However, advances in high-throughput next-generation sequencing technologies have prompted a revolution in cancer genomics, which leads to the recent discovery that genomic alterations take center stage in activating the
TERT
gene. In this review article, we summarize critical mechanisms activating
TERT
transcription, with special emphases on the contribution of TERT promoter mutations and structural alterations at the
TERT
locus, and briefly discuss the underlying implications of these genomic events-driven TERT hyperactivity in cancer initiation/progression and potential clinical applications as well.
Journal Article
The role of telomeres and telomerase in cirrhosis and liver cancer
by
Ningarhari, Massih
,
Zucman-Rossi, Jessica
,
Jean-Charles Nault
in
Biomarkers
,
Carcinogenesis
,
Cell division
2019
Telomerase is a key enzyme for cell survival that prevents telomere shortening and the subsequent cellular senescence that is observed after many rounds of cell division. In contrast, inactivation of telomerase is observed in most cells of the adult liver. Absence of telomerase activity and shortening of telomeres has been implicated in hepatocyte senescence and the development of cirrhosis, a chronic liver disease that can lead to hepatocellular carcinoma (HCC) development. During hepatocarcinogenesis, telomerase reactivation is required to enable the uncontrolled cell proliferation that leads to malignant transformation and HCC development. Part of the telomerase complex, telomerase reverse transcriptase, is encoded by TERT, and several mechanisms of telomerase reactivation have been described in HCC that include somatic TERT promoter mutations, TERT amplification, TERT translocation and viral insertion into the TERT gene. An understanding of the role of telomeres and telomerase in HCC development is important to develop future targeted therapies and improve survival of this disease. In this Review, the roles of telomeres and telomerase in liver carcinogenesis are discussed, in addition to their potential translation to clinical practice as biomarkers and therapeutic targets.
Journal Article
An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory
by
Valvo, Salvatore
,
Chiurchiù, Valerio
,
Dustin, Michael L.
in
631/250/1619/554
,
631/80/103
,
631/80/103/560
2022
The common view is that T lymphocytes activate telomerase to delay senescence. Here we show that some T cells (primarily naïve and central memory cells) elongated telomeres by acquiring telomere vesicles from antigen-presenting cells (APCs) independently of telomerase action. Upon contact with these T cells, APCs degraded shelterin to donate telomeres, which were cleaved by the telomere trimming factor TZAP, and then transferred in extracellular vesicles at the immunological synapse. Telomere vesicles retained the Rad51 recombination factor that enabled telomere fusion with T-cell chromosome ends lengthening them by an average of ~3,000 base pairs. Thus, there are antigen-specific populations of T cells whose ageing fate decisions are based on telomere vesicle transfer upon initial contact with APCs. These telomere-acquiring T cells are protected from senescence before clonal division begins, conferring long-lasting immune protection.
Lanna and colleagues discover extracellular vesicle-mediated transfer of telomeres from antigen-presenting cells to T cells, which enables elongation of chromosomes, protection against replicative senescence and long-term immune defence.
Journal Article
Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System
2022
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
The 5th edition of WHO Classification of Tumors of the Central Nervous System adopted new molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, i.e., the CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, as independent molecular markers of the highest grade.
Journal Article
Regulation of human telomerase in homeostasis and disease
2020
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.Telomere length is maintained by telomerase, which comprises a reverse transcriptase and a template RNA. Telomerase activity is disrupted in several genetic disorders, but is commonly increased in cancer. Recent studies have uncovered many regulatory mechanisms of telomerase and how telomerase upregulation in cancer is achieved.
Journal Article