Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,467
result(s) for
"Th17 Cells - metabolism"
Sort by:
Increased CXCR3⁺ T Cells Impairs Recruitment of T-Helper Type 17 Cells via Interferon γ and Interleukin 18 in the Small Intestine Mucosa During Treated HIV-1 Infection
by
Carrere, N.
,
Suc, B.
,
Izopet, J.
in
Anti-Retroviral Agents - therapeutic use
,
Antiretroviral drugs
,
Antiretroviral therapy
2019
The restoration of CD4⁺ T cells, especially T-helper type 17 (Th17) cells, remains incomplete in the gut mucosa of most human immunodeficiency virus type 1 (HIV-1)–infected individuals despite sustained antiretroviral therapy (ART). Herein, we report an increase in the absolute number of CXCR3⁺ T cells in the duodenal mucosa during ART. The frequencies of Th1 and CXCR3⁺ CD8⁺ T cells were increased and negatively correlated with CCL20 and CCL25 expression in the mucosa. In ex vivo analyses, we showed that interferon γ, the main cytokine produced by Th1 and effector CD8⁺ T cells, downregulates the expression of CCL20 and CCL25 by small intestine enterocytes, while it increases the expression of CXCL9/10/11, the ligands of CXCR3. Interleukin 18, a pro-Th1 cytokine produced by enterocytes, also contributes to the downregulation of CCL20 expression and increases interferon γ production by Th1 cells. This could perpetuate an amplification loop for CXCR3-driven Th1 and effector CD8⁺ T cells recruitment to the gut, while impairing Th17 cells homing through the CCR6-CCL20 axis in treated HIV-1–infected individuals.
Journal Article
Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells’ Differentiation and Function in Induction of Colitis
2019
How the gut microbiota regulates intestinal homeostasis is not completely clear. Gut microbiota metabolite short-chain fatty acids (SCFAs) have been reported to regulate T-cell differentiation. However, the mechanisms underlying SCFA regulation of T-cell differentiation and function remain to be investigated.
CBir1, an immunodominant microbiota antigen, transgenic T cells were treated with butyrate under various T-cell polarization conditions to investigate butyrate regulation of T-cell differentiation and the mechanism involved. Transfer of butyrate-treated CBir T cells into Rag1-/- mice was performed to study the in vivo role of such T cells in inducing colitis.
Although butyrate promoted Th1 cell development by promoting IFN-γ and T-bet expression, it inhibited Th17 cell development by suppressing IL-17, Rorα, and Rorγt expression. Interestingly, butyrate upregulated IL-10 production in T cells both under Th1 and Th17 cell conditions. Furthermore, butyrate induced T-cell B-lymphocyte-induced maturation protein 1 (Blimp1) expression, and deficiency of Blimp1 in T cells impaired the butyrate upregulation of IL-10 production, indicating that butyrate promotes T-cell IL-10 production at least partially through Blimp1. Rag1-/- mice transferred with butyrate-treated T cells demonstrated less severe colitis, compared with transfer of untreated T cells, and administration of anti-IL-10R antibody exacerbated colitis development in Rag-/- mice that had received butyrate-treated T cells. Mechanistically, the effects of butyrate on the development of Th1 cells was through inhibition of histone deacetylase but was independent of GPR43.
These data indicate that butyrate controls the capacity of T cells in the induction of colitis by differentially regulating Th1 and Th17 cell differentiation and promoting IL-10 production, providing insights into butyrate as a potential therapeutic for the treatment of inflammatory bowel disease.
Journal Article
Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases
2019
Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.
Journal Article
The pathogenicity of Th17 cells in autoimmune diseases
by
Yasuda, Keiko
,
Takeuchi, Yusuke
,
Hirota, Keiji
in
Animal models
,
Arthritis
,
Autoimmune diseases
2019
IL-17-producing T helper (Th17) cells have been implicated in the pathogenesis of many inflammatory and autoimmune diseases. Targeting the effector cytokines IL-17 and GM-CSF secreted by autoimmune Th17 cells has been shown to be effective for the treatment of the diseases. Understanding a molecular basis of Th17 differentiation and effector functions is therefore critical for the regulation of the pathogenicity of tissue Th17 cells in chronic inflammation. Here, we discuss the roles of proinflammatory cytokines and environmental stimuli in the control of Th17 differentiation and chronic tissue inflammation by pathogenic Th17 cells in humans and in mouse models of autoimmune diseases. We also highlight recent advances in the regulation of pathogenic Th17 cells by gut microbiota and immunometabolism in autoimmune arthritis.
Journal Article
Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia
2020
The immune system of patients infected by SARS-CoV-2 is severely impaired. Detailed investigation of T cells and cytokine production in patients affected by COVID-19 pneumonia are urgently required. Here we show that, compared with healthy controls, COVID-19 patients’ T cell compartment displays several alterations involving naïve, central memory, effector memory and terminally differentiated cells, as well as regulatory T cells and PD1
+
CD57
+
exhausted T cells. Significant alterations exist also in several lineage-specifying transcription factors and chemokine receptors. Terminally differentiated T cells from patients proliferate less than those from healthy controls, whereas their mitochondria functionality is similar in CD4
+
T cells from both groups. Patients display significant increases of proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2 cytokines, chemokines and galectins; their lymphocytes produce more tumor necrosis factor (TNF), interferon-γ, interleukin (IL)-2 and IL-17, with the last observation implying that blocking IL-17 could provide a novel therapeutic strategy for COVID-19.
COVID-19 is a serious pandemic threat to public health, but insights on the pathophysiological and immunological conditions are only emerging. Here the authors use multi-color flow cytometry to characterize CD4
+
and CD8
+
T cells in peripheral blood from 39 COVID-19 patients in Italy to report altered T cell activation, function and polarization.
Journal Article
Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression
2018
The gut microbiota has been causally linked to cancer, yet how intestinal microbes influence progression of extramucosal tumors is poorly understood. Here we provide evidence implying that
Prevotella heparinolytica
promotes the differentiation of Th17 cells colonizing the gut and migrating to the bone marrow (BM) of transgenic Vk*MYC mice, where they favor progression of multiple myeloma (MM). Lack of IL-17 in Vk*MYC mice, or disturbance of their microbiome delayed MM appearance. Similarly, in smoldering MM patients, higher levels of BM IL-17 predicted faster disease progression. IL-17 induced STAT3 phosphorylation in murine plasma cells, and activated eosinophils. Treatment of Vk*MYC mice with antibodies blocking IL-17, IL-17RA, and IL-5 reduced BM accumulation of Th17 cells and eosinophils and delayed disease progression. Thus, in Vk*MYC mice, commensal bacteria appear to unleash a paracrine signaling network between adaptive and innate immunity that accelerates progression to MM, and can be targeted by already available therapies.
The mechanisms through which gut microbiota affect extramucosal tumors are poorly understood. Here the authors show that the gut microbiota promotes multiple myeloma by inducing differentiation and migration of Th17 cells in the bone marrow resulting also in increased recruitment of pro-tumorigenic eosinophils.
Journal Article
The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis
2018
Psoriasis is a chronic, immune-mediated, inflammatory disease that is pathogenically driven by proinflammatory cytokines. This article reviews the immunologic role of interleukin (IL)-17, the major effector cytokine in the pathogenesis of psoriatic disease, along with the rationale for targeting the IL-17 cytokine family (IL-17A, IL-17F, and IL-17 receptor A) in the treatment of psoriasis and psoriatic arthritis. Emerging evidence indicates that major sources of IL-17A in patients with psoriatic disease are mast cells, γδ T cells, αβ T cells, and innate lymphoid cells in lesional skin and synovial fluid. Within the skin and joints, IL-17A acts on cellular targets, including keratinocytes, neutrophils, endothelial cells, fibroblasts, osteoclasts, chondrocytes, and osteoblasts, to stimulate production of various antimicrobial peptides, chemokines, and proinflammatory and proliferative cytokines, which, in turn, promote tissue inflammation and bone remodeling. The critical importance of the IL-23/IL-17A axis to the pathogenesis of psoriatic disease has resulted in many new biologic treatments targeting these cytokines. These biologics dramatically improve skin and joint symptoms in patients with moderate-to-severe psoriasis and psoriatic arthritis.
Journal Article
Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation
2013
Intergenic long noncoding RNAs (lincRNAs) regulate gene expression in various tissues. Zhao and colleagues identify 1,524 lincRNA clusters in thymocytes and mature T cell subsets and reveal dynamic and cell-specific patterns of lincRNA expression during T cell differentiation.
Although intergenic long noncoding RNAs (lincRNAs) have been linked to gene regulation in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identified 1,524 lincRNA clusters in 42 T cell samples, from early T cell progenitors to terminally differentiated helper T cell subsets. Our analysis revealed highly dynamic and cell-specific expression patterns for lincRNAs during T cell differentiation. These lincRNAs were located in genomic regions enriched for genes that encode proteins with immunoregulatory functions. Many were bound and regulated by the key transcription factors T-bet, GATA-3, STAT4 and STAT6. We found that the lincRNA LincR-
Ccr2
-5′AS, together with GATA-3, was an essential component of a regulatory circuit in gene expression specific to the T
H
2 subset of helper T cells and was important for the migration of T
H
2 cells.
Journal Article
Psoriasis and Antimicrobial Peptides
by
Yamasaki, Kenshi
,
Takahashi, Toshiya
in
Antimicrobial Cationic Peptides - metabolism
,
Antirheumatic Agents - therapeutic use
,
Cytokines - biosynthesis
2020
Psoriasis is a systemic inflammatory disease caused by crosstalk between various cells such as T cells, neutrophils, dendritic cells, and keratinocytes. Antimicrobial peptides (AMPs) such as β-defensin, S100, and cathelicidin are secreted from these cells and activate the innate immune system through various mechanisms to induce inflammation, thus participating in the pathogenesis of psoriasis. In particular, these antimicrobial peptides enhance the binding of damage-associated molecular patterns such as self-DNA and self-RNA to their receptors and promote the secretion of interferon from activated plasmacytoid dendritic cells and keratinocytes to promote inflammation in psoriasis. Neutrophil extracellular traps (NETs), complexes of self-DNA and proteins including LL-37 released from neutrophils in psoriatic skin, induce Th17. Activated myeloid dendritic cells secrete a mass of inflammatory cytokines such as IL-12 and IL-23 in psoriasis, which is indispensable for the proliferation and survival of T cells that produce IL-17. AMPs enhance the production of some of Th17 and Th1 cytokines and modulate receptors and cellular signaling in psoriasis. Inflammation induced by DAMPs, including self-DNA and RNA released due to microinjuries or scratches, and the enhanced recognition of DAMPs by AMPs, may be involved in the mechanism underlying the Köbner phenomenon in psoriasis.
Journal Article
Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism
by
Oerum, Henrik
,
Bowness, Paul
,
Penn, Henry
in
Ankylosing spondylitis
,
Autoimmune diseases
,
Autoimmune Diseases - drug therapy
2020
T helper (Th) cells are CD4⁺ effector T cells that play a critical role in immunity by shaping the inflammatory cytokine environment in a variety of physiological and pathological situations. Using a combined chemico-genetic approach, we identify histone H3K27 demethylases KDM6A and KDM6B as central regulators of human Th subsets. The prototypic KDM6 inhibitor GSK-J4 increases genome-wide levels of the repressive H3K27me3 chromatin mark and leads to suppression of the key transcription factor RORγt during Th17 differentiation. In mature Th17 cells, GSK-J4 induces an altered transcriptional program with a profound metabolic reprogramming and concomitant suppression of IL-17 cytokine levels and reduced proliferation. Single-cell analysis reveals a specific shift from highly inflammatory cell subsets toward a resting state upon demethylase inhibition. The root cause of the observed antiinflammatory phenotype in stimulated Th17 cells is reduced expression of key metabolic transcription factors, such as PPRC1. Overall, this leads to reduced mitochondrial biogenesis, resulting in a metabolic switch with concomitant antiinflammatory effects. These data are consistent with an effect of GSK-J4 on Th17 T cell differentiation pathways directly related to proliferation and include regulation of effector cytokine profiles. This suggests that inhibiting KDM6 demethylases may be an effective, even in the short term, therapeutic target for autoimmune diseases, including ankylosing spondylitis.
Journal Article