Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34
result(s) for
"Thiolester Hydrolases - antagonists "
Sort by:
A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis
2009
Mir-138, identified in a screen for microRNAs associated with synapses, regulates dendritic spine morphogenesis through APT-1, a depalmitoylation enzyme that modulates the membrane localization of the heterotrimeric G protein alpha subunit.
The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the α
13
subunits of G proteins (Gα
13
). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Gα
13
both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Gα
13
might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.
Journal Article
Small-molecule inhibition of APT1 affects Ras localization and signaling
by
Renner, Steffen
,
Bastiaens, Philippe I H
,
Waldmann, Herbert
in
631/80/2023
,
631/80/86
,
631/92/613
2010
Reversible palmitoylation controls the localization and signaling of Ras. Development of a potent and specific small molecule inhibitor of the thioesterase APT1 reveals that this enzyme depalmitoylates Ras in cells. Inhibition of APT1 led to redistribution and altered activity of HRas, NRas and an oncogenic mutant Ras.
Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization—and thereby unregulated signaling—caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells. The inhibitor, palmostatin B, perturbs the cellular acylation cycle at the level of depalmitoylation and thereby causes a loss of the precise steady-state localization of palmitoylated Ras. As a consequence, palmostatin B induces partial phenotypic reversion in oncogenic HRasG12V-transformed fibroblasts. We identify APT1 as one of the thioesterases in the acylation cycle and show that this protein is a cellular target of the inhibitor.
Journal Article
USP11 controls R-loops by regulating senataxin proteostasis
2021
R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at
KEAP1
promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.
DNA:RNA hybrids (R-loops) are products of transcription that impact genome integrity and gene expression. Here the authors reveal a mechanism for regulating R-loops in a ubiquitination-dependent manner controlled by the activities of USP11 and KEAP1
Journal Article
Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice
by
Li, Song
,
Tan, Jun
,
Cai, Chuanbin
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
2024
Alzheimer’s Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients’ cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Synopsis
In Alzheimer’s disease (AD), USP11 interacts with and deubiquitinates tau, leading to its accumulation and accelerating tau pathology. IsoLiPro promotes the ubiquitination and proteolysis of tau protein by inhibiting the expression of USP11, thereby alleviating AD-associated tau pathologies.
IsoLiPro, a small molecule inhibitor targeting USP11, was synthesized and demonstrated the ability to enhance tau ubiquitination.
Inhibition of USP11 expression by IsoLiPro accelerates tau proteolysis, mitigating AD-associated tau pathology.
A significant reduction in β-amyloid deposition was observed in 5xFAD mice treated with IsoLiPro.
IsoLiPro improved synaptic integrity and cognitive function in AD model mice.
IsoLiPro shows promise as a potential therapeutic agent for AD.
In Alzheimer’s disease (AD), USP11 interacts with and deubiquitinates tau, leading to its accumulation and accelerating tau pathology. IsoLiPro promotes the ubiquitination and proteolysis of tau protein by inhibiting the expression of USP11, thereby alleviating AD-associated tau pathologies.
Journal Article
Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer
2019
Valine catabolism is known to be essential for cancer cells but the detailed mechanism remains unclear. This study is to explore the critical roles of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in colorectal cancers (CRC) and to develop a new therapy returning valine metabolism homeostasis. High HIBCH expression was first confirmed to correlate with poor survival in patients with CRC, which was then linked to the increased cell growth, resistant apoptosis, and decreased autophagy in CRC cells. The functions of HIBCH in CRC were dependent on its mitochondrial localization. High HIBCH level was further demonstrated to promote the metabolism of tricarboxylic acid cycle as well as oxidative phosphorylation in CRC cells. Based on above findings, we further discovered a novel valine catabolism inhibitor SBF-1. The pharmacological blockade of HIBCH mitochondrial localization with SBF-1 resulted in decreased cancer cell growth and increased autophagy, collectively contributing to the antitumor effect both in vitro and in vivo. Moreover, anti-VEGF therapy with bevacizumab increased HIBCH level in CRC cells, which in turn caused the resistance to the therapy. The interference with HIBCH function by SBF-1 significantly increased the antitumor efficacy of bevacizumab and led to a robust survival benefit. The present study identified HIBCH as a critical enzyme of valine catabolism in CRC progression and resistance to anti-VEGF therapy. We also provided a novel HIBCH inhibitor SBF-1, which highlighted the combined therapy using valine catabolic inhibitor along with anti-VEGF drugs, to control progression of CRC.
Journal Article
MicroRNA-29c Increases the Chemosensitivity of Pancreatic Cancer Cells by Inhibiting USP22 Mediated Autophagy
by
Wang, Rongpin
,
Hu, Chaoquan
,
Wu, Xiaoliang
in
3' Untranslated Regions
,
Animals
,
Antagomirs - metabolism
2018
Background/Aims: Pancreatic cancer (PC) is an aggressive malignancy with a poor survival rate. Despite advances in the treatment of PC, the efficacy of therapy is limited by the development of chemoresistance. Here, we examined the role of microRNA-29c (miR-29c) and the involvement of autophagy and apoptosis in the chemoresistance of PC cells in vivo and in vitro. Methods: We employed qRT-PCR, western blot and immunofluorescence to examine the expression level of miR-29c, USP22 and autophagy relative protein. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Luciferase reporter assays confirmed the relationship between USP22 and miR-29c. Results: miR-29c overexpression in the PC cell line PANC-1 enhanced the effect of gemcitabine on decreasing cell viability and inducing apoptosis and inhibited autophagy, as shown by western blotting, immunofluorescence staining, colony formation assays, and flow cytometry. Ubiquitin specific peptidase (USP)-22, a deubiquitinating enzyme known to induce autophagy and promote PC cell survival, was identified as a direct target of miR-29c. USP22 knockdown experiments indicated that USP22 suppresses gemcitabine-induced apoptosis by promoting autophagy, thereby increasing the chemoresistance of PC cells. Luciferase reporter assays confirmed that USP22 is a direct target of miR-29c. A xenograft mouse model demonstrated that miR-29c increases the chemosensitivity of PC in vivo by downregulating USP22, leading to the inhibition of autophagy and induction of apoptosis. Conclusions: Taken together, these findings reveal a potential mechanism underlying the chemoresistance of PC cells mediated by the regulation of USP22-mediated autophagy by miR-29c, suggesting potential targets and therapeutic strategies in PC.
Journal Article
CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease)
2019
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating monogenetic lysosomal disorders that affect children and young adults with no cure or effective treatment currently available. One of the more severe infantile forms of the disease (INCL or CLN1 disease) is due to mutations in the palmitoyl-protein thioesterase 1 (
PPT1
) gene and severely reduces the child’s lifespan to approximately 9 years of age. In order to better translate the human condition than is possible in mice, we sought to produce a large animal model employing CRISPR/Cas9 gene editing technology. Three
PPT1
homozygote sheep were generated by insertion of a disease-causing
PPT1
(R151X) human mutation into the orthologous sheep locus. This resulted in a morphological, anatomical and biochemical disease phenotype that closely resembles the human condition. The homozygous sheep were found to have significantly reduced PPT1 enzyme activity and accumulate autofluorescent storage material, as is observed in CLN1 patients. Clinical signs included pronounced behavioral deficits as well as motor deficits and complete loss of vision, with a reduced lifespan of 17 ± 1 months at a humanely defined terminal endpoint. Magnetic resonance imaging (MRI) confirmed a significant decrease in motor cortical volume as well as increased ventricular volume corresponding with observed brain atrophy and a profound reduction in brain mass of 30% at necropsy, similar to alterations observed in human patients. In summary, we have generated the first CRISPR/Cas9 gene edited NCL model. This novel sheep model of CLN1 disease develops biochemical, gross morphological and
in vivo
brain alterations confirming the efficacy of the targeted modification and potential relevance to the human condition.
Journal Article
A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30
by
Wen Yue Ziheng Chen HaiYang Li Chen Yan Ming Chen Du Feng Chaojun Yan Hao Wu Lei Du Yueying Wang Jinhua Liu Xiaohu Huang Laixin Xia Lei Liu Xiaohui Wang Haijing Jin Jun Wang Zhiyin Song Xiaojiang Hao Quan Chen
in
631/80/313/2378
,
631/80/458/582
,
631/80/642/333
2014
Mitocbondrial fusion is a highly coordinated process that mixes and unifies the mitochondrial compartment for normal mitochondrial functions and mitochondrial DNA inheritance. Dysregulated mitochondrial fusion causes mitochondrial fragmentation, abnormal mitochondrial physiology and inheritance, and has been causally linked with a number of neuronal diseases. Here, we identified a diterpenoid derivative 15-oxospiramilactone ($3) that potently induced mitochondrial fusion to restore the mitochondrial network and oxidative respiration in cells that are deficient in either Mfnl or Mfn2. A mitochondria-localized deubiquitinase USP30 is a target of $3. The inhibition of USP30 by $3 leads to an increase of non-degradative ubiquitination of Mfnl/2, which enhances Mfnl and Mfn2 activity and promotes mitochondrial fusion. Thus, through the use of an inhibitor of USP30, our study uncovers an unconventional function of non-degradative ubiquitination of Mfns in promoting mitochondrial fusion.
Journal Article
Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads
2019
Some genetic melanocortin-1 receptor (MC1R) variants responsible for human red hair color (RHC-variants) are consequently associated with increased melanoma risk. Although MC1R signaling is critically dependent on its palmitoylation primarily mediated by the ZDHHC13 protein-acyl transferase, whether increasing MC1R palmitoylation represents a viable therapeutic target to limit melanomagenesis in redheads is unknown. Here we identify a specific and efficient in vivo strategy to induce MC1R palmitoylation for therapeutic benefit. We validate the importance of ZDHHC13 to MC1R signaling in vivo by targeted expression of ZDHHC13 in C57BL/6J-MC1R
RHC
mice and subsequently inhibit melanomagenesis. By identifying APT2 as the MC1R depalmitoylation enzyme, we are able to demonstrate that administration of the selective APT2 inhibitor ML349 treatment efficiently increases MC1R signaling and represses UVB-induced melanomagenesis in vitro and in vivo. Targeting APT2, therefore, represents a preventive/therapeutic strategy to reduce melanoma risk, especially in individuals with red hair.
Melanocortin-1 receptor is a palmitoylated protein and variants of the receptor are associated with red hair colour and susceptibility to melanoma. Here, the authors describe a method to enhance the palmitoylation of the receptor, which can inhibit melanomagenesis in mice.
Journal Article
A Small Natural Molecule S3 Protects Retinal Ganglion Cells and Promotes Parkin-Mediated Mitophagy against Excitotoxicity
2022
Glutamate excitotoxicity may contribute to retinal ganglion cell (RGC) degeneration in glaucoma and other optic neuropathies, leading to irreversible blindness. Growing evidence has linked impaired mitochondrial quality control with RGCs degeneration, while parkin, an E3 ubiquitin ligase, has proved to be protective and promotes mitophagy in RGCs against excitotoxicity. The purpose of this study was to explore whether a small molecule S3 could modulate parkin-mediated mitophagy and has therapeutic potential for RGCs. The results showed that as an inhibitor of deubiquitinase USP30, S3 protected cultured RGCs and improved mitochondrial health against NMDA-induced excitotoxicity. Administration of S3 promoted the parkin expression and its downstream mitophagy-related proteins in RGCs. An upregulated ubiquitination level of Mfn2 and protein level of OPA1 were also observed in S3-treated RGCs, while parkin knockdown resulted in a major loss of the protective effect of S3 on RGCs under excitotoxicity. These findings demonstrated that S3 promoted RGC survival mainly through enhancing parkin-mediated mitophagy against excitotoxicity. The neuroprotective value of S3 in glaucoma and other optic neuropathies deserves further investigation.
Journal Article