Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5,121 result(s) for "Vision, Ocular - physiology"
Sort by:
Duplicity Theory of Vision
The duplicity theory of vision concerns the comparisons (both differences and similarities) and interaction between the cone and rod systems in the visual pathways, with the assumption that the cone system is active during daylight vision and the rod system functions in low light (night time). Research on this aspect of vision dates back to the 17th century and the work of Newton, and is still ongoing today. This book describes the origin and development of this fundamental theory within vision research - whilst also examining the Young–Helmholtz trichromatic colour theory, and the opponent colour theory of Hering - and presents evidence and ideas in light of modern conceptions of the theory. Written for academic researchers and graduate students, the book brings back knowledge of the tradition of duplicity theory, inspiring questions related to anatomy, comparative biology, molecular biology, photochemistry, physiology, genetics, phylogenetics and psychophysics.
Vision using multiple distinct rod opsins in deep-sea fishes
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin–based vision in vertebrates.
Reprogramming to recover youthful epigenetic information and restore vision
Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity 1 – 3 . Changes to DNA methylation patterns over time form the basis of ageing clocks 4 , but whether older individuals retain the information needed to restore these patterns—and, if so, whether this could improve tissue function—is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity 5 – 7 . Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1 ), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information—encoded in part by DNA methylation—that can be accessed to improve tissue function and promote regeneration in vivo. Expression of three Yamanaka transcription factors in mouse retinal ganglion cells restores youthful DNA methylation patterns, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice, suggesting that mammalian tissues retain a record of youthful epigenetic information that can be accessed to improve tissue function.
ISCEV standard for clinical visual evoked potentials: (2016 update)
Visual evoked potentials (VEPs) can provide important diagnostic information regarding the functional integrity of the visual system. This document updates the ISCEV standard for clinical VEP testing and supersedes the 2009 standard. The main changes in this revision are the acknowledgment that pattern stimuli can be produced using a variety of technologies with an emphasis on the need for manufacturers to ensure that there is no luminance change during pattern reversal or pattern onset/offset. The document is also edited to bring the VEP standard into closer harmony with other ISCEV standards. The ISCEV standard VEP is based on a subset of stimulus and recording conditions that provide core clinical information and can be performed by most clinical electrophysiology laboratories throughout the world. These are: (1) Pattern-reversal VEPs elicited by checkerboard stimuli with large 1 degree (°) and small 0.25° checks. (2) Pattern onset/offset VEPs elicited by checkerboard stimuli with large 1° and small 0.25° checks. (3) Flash VEPs elicited by a flash (brief luminance increment) which subtends a visual field of at least 20°. The ISCEV standard VEP protocols are defined for a single recording channel with a midline occipital active electrode. These protocols are intended for assessment of the eye and/or optic nerves anterior to the optic chiasm. Extended, multi-channel protocols are required to evaluate postchiasmal lesions.
Partial recovery of visual function in a blind patient after optogenetic therapy
Optogenetics may enable mutation-independent, circuit-specific restoration of neuronal function in neurological diseases. Retinitis pigmentosa is a neurodegenerative eye disease where loss of photoreceptors can lead to complete blindness. In a blind patient, we combined intraocular injection of an adeno-associated viral vector encoding ChrimsonR with light stimulation via engineered goggles. The goggles detect local changes in light intensity and project corresponding light pulses onto the retina in real time to activate optogenetically transduced retinal ganglion cells. The patient perceived, located, counted and touched different objects using the vector-treated eye alone while wearing the goggles. During visual perception, multichannel electroencephalographic recordings revealed object-related activity above the visual cortex. The patient could not visually detect any objects before injection with or without the goggles or after injection without the goggles. This is the first reported case of partial functional recovery in a neurodegenerative disease after optogenetic therapy. Combined intraocular injection of an adeno-associated viral vector, encoding an optogenetic sensor, with light stimulation via engineered goggles enables partial recovery of visual function in a blind patient.
Bioinspired multisensory neural network with crossmodal integration and recognition
The integration and interaction of vision, touch, hearing, smell, and taste in the human multisensory neural network facilitate high-level cognitive functionalities, such as crossmodal integration, recognition, and imagination for accurate evaluation and comprehensive understanding of the multimodal world. Here, we report a bioinspired multisensory neural network that integrates artificial optic, afferent, auditory, and simulated olfactory and gustatory sensory nerves. With distributed multiple sensors and biomimetic hierarchical architectures, our system can not only sense, process, and memorize multimodal information, but also fuse multisensory data at hardware and software level. Using crossmodal learning, the system is capable of crossmodally recognizing and imagining multimodal information, such as visualizing alphabet letters upon handwritten input, recognizing multimodal visual/smell/taste information or imagining a never-seen picture when hearing its description. Our multisensory neural network provides a promising approach towards robotic sensing and perception. Human-like robotic sensing aims at extracting and processing complicated environmental information via multisensory integration and interaction. Tan et al. report an artificial spiking multisensory neural network that integrates five primary senses and mimics the crossmodal perception of biological brains.
The impact of microsaccades on vision: towards a unified theory of saccadic function
Key Points Our eyes are never still. Even when we attempt to fix our gaze, small ocular motions — generally undetectable to the naked eye — shift our eye position. These eye motions include microsaccades, drift and tremor. Microsaccade research has recently become one of the most active fields in visual, oculomotor and even cognitive neuroscience. The past decade of research has linked microsaccades to perception and determined critical interactions between microsaccade dynamics and cognitive processes, especially in regard to the allocation of attention. Behavioural and physiological evidence indicates that microsaccades and saccades are the same type of eye movement and share a common oculomotor generator. Microsaccades may serve as varied functions during fixation as saccades during exploration. The microsaccadic–saccadic continuum may extend to 'saccadic intrusions' or saccades that intrude or interrupt accurate fixation, which are prevalent in various neurological disorders. Determining how microsaccades are altered in neurological disorders has the potential to inform the pathogenesis of neural disease. Microsaccades are small, rapid eye movements that occur when we are attempting to fix our gaze on one spot. Martinez-Conde et al . review the physiology and functions of microsaccades and conclude that they form part of a continuum with larger saccades. When we attempt to fix our gaze, our eyes nevertheless produce so-called 'fixational eye movements', which include microsaccades, drift and tremor. Fixational eye movements thwart neural adaptation to unchanging stimuli and thus prevent and reverse perceptual fading during fixation. Over the past 10 years, microsaccade research has become one of the most active fields in visual, oculomotor and even cognitive neuroscience. The similarities and differences between microsaccades and saccades have been a most intriguing area of study, and the results of this research are leading us towards a unified theory of saccadic and microsaccadic function.
Predictive information in a sensory population
Guiding behavior requires the brain to make predictions about the future values of sensory inputs. Here, we show that efficient predictive computation starts at the earliest stages of the visual system. We compute how much information groups of retinal ganglion cells carry about the future state of their visual inputs and show that nearly every cell in the retina participates in a group of cells for which this predictive information is close to the physical limit set by the statistical structure of the inputs themselves. Groups of cells in the retina carry information about the future state of their own activity, and we show that this information can be compressed further and encoded by downstream predictor neurons that exhibit feature selectivity that would support predictive computations. Efficient representation of predictive information is a candidate principle that can be applied at each stage of neural computation. Significance Prediction is an essential part of life. However, are we really “good” at making predictions? More specifically, are pieces of our brain close to being optimal predictors? To assess the efficiency of prediction, we need to measure the information that neurons carry about the future of our sensory experiences. We show how to do this, at least in simplified contexts, and find that groups of neurons in the retina indeed are close to maximally efficient at separating predictive information from the nonpredictive background. Efficient coding of predictive information is a principle that can be applied at every stage of neural computation.