Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,262
result(s) for
"Vitamin D - genetics"
Sort by:
Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases
2020
It has proven difficult to identify the underlying genes in complex autoimmune diseases. Here, we use forward genetics to identify polymorphisms in the vitamin D receptor gene (Vdr) promoter, controlling Vdr expression and T cell activation. We isolated these polymorphisms in a congenic mouse line, allowing us to study the immunomodulatory properties of VDR in a physiological context. Congenic mice overexpressed VDR selectively in T cells, and thus did not suffer from calcemic effects. VDR overexpression resulted in an enhanced antigen-specific T cell response and more severe autoimmune phenotypes. In contrast, vitamin D3-deficiency inhibited T cell responses and protected mice from developing autoimmune arthritis. Our observations are likely translatable to humans, as Vdr is overexpressed in rheumatic joints. Genetic control of VDR availability codetermines the proinflammatory behavior of T cells, suggesting that increased presence of VDR at the site of inflammation might limit the antiinflammatory properties of its ligand.
Journal Article
Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene
by
Bouillon, Roger
,
Lehouck, An
,
Buysschaert, Ian
in
Aged
,
Asthma
,
Biological and medical sciences
2010
IntroductionVitamin D deficiency has been associated with many chronic illnesses, but little is known about its relationship with chronic obstructive pulmonary disease (COPD).ObjectivesSerum 25-hydroxyvitamin D (25-OHD) levels were measured in 414 (ex)-smokers older than 50 years and the link between vitamin D status and presence of COPD was assessed. The rs7041 and rs4588 variants in the vitamin D-binding gene (GC) were genotyped and their effects on 25-OHD levels were tested.ResultsIn patients with COPD, 25-OHD levels correlated significantly with forced expiratory volume in 1 s (FEV1) (r=0.28, p<0.0001). Compared with 31% of the smokers with normal lung function, as many as 60% and 77% of patients with GOLD (Global Initiative for Obstructive Lung Disease) stage 3 and 4 exhibited deficient 25-OHD levels <20 ng/ml (p<0.0001). Additionally, 25-OHD levels were reduced by 25% in homozygous carriers of the rs7041 at-risk T allele (p<0.0001). This correlation was found to be independent of COPD severity, smoking history, age, gender, body mass index, corticosteroid intake, seasonal variation and rs4588 (p<0.0001). Notably, 76% and 100% of patients with GOLD stage 3 and 4 homozygous for the rs7041 T allele exhibited 25-OHD levels <20 ng/ml. Logistic regression corrected for age, gender and smoking history further revealed that homozygous carriers of the rs7041 T allele exhibited an increased risk for COPD (OR 2.11; 95% CI 1.20 to 3.71; p=0.009).ConclusionVitamin D deficiency occurs frequently in COPD and correlates with severity of COPD. The data warrant vitamin D supplementation in patients with severe COPD, especially in those carrying at-risk rs7041 variants.
Journal Article
Exploring the interaction between vitamin D pathway gene polymorphisms, vitamin D status, and depression: A population-based study
by
Carraro, Júlia Cristina Cardoso
,
Moura, Samara Silva de
,
Menezes-Júnior, Luiz Antônio Alves de
in
7-Dehydrocholesterol reductase
,
Adult
,
Brazil - epidemiology
2025
The association between vitamin D and depression is controversial, mainly because of genetic differences and confounding factors.
To evaluate the association between vitamin D and depressive symptoms, considering the influence of genetic variations, skin color, and lifestyle.
This population-based cross-sectional study was conducted during the COVID-19 pandemic. Depressive symptoms were assessed using the Patient Health Questionnaire-9. Vitamin D deficiency was defined as levels of <20 ng/mL in healthy individuals or <30 ng/mL in at-risk groups. A genetic risk score for vitamin D deficiency was developed based on gene polymorphisms involved in vitamin D metabolism (DHCR7, GC, and VDR), and this score was categorized into tertiles.
Among 1637 participants, 50.9% were women, with a mean age of 42.9 years (95% CI: 41.62–44.26). No association was found between vitamin D deficiency and depressive symptoms. However, the interaction analysis between vitamin D deficiency and the genetic risk score in the subgroups revealed disparities. Individuals with non-white skin color and vitamin D deficiency in the third tertile, supplement non-users with vitamin D deficiency in the second and third tertiles, and participants with insufficient sun exposure and vitamin D deficiency in the second and third tertiles had a higher prevalence of depressive symptoms.
Vitamin D deficiency is linked to a higher prevalence of depressive symptoms in genetically predisposed Brazilians with non-white skin, no vitamin D supplementation, and insufficient sun exposure. Mental health guidelines should aim to promote lifestyle modifications among individuals who are predisposed to depressive symptoms.
[Display omitted]
•Vitamin D deficiency was not associated with depression.•Similarly, genetic risk score showed no association with depression.•Vitamin D deficiency interacts with genetic risk, increasing depression prevalence.•These findings were specific to individuals with dark skin color.•Similar findings in individuals lacking vitamin D supplements and sun exposure.
Journal Article
Single-Nucleotide Polymorphisms (SNPs) in Vitamin D Physiology Genes May Modulate Serum 25(OH)D Levels in Well-Trained CrossFit® Athletes, Which May Be Associated with Performance Outcomes
2025
Vitamin D is a key micronutrient in the function of the skeletomuscular system. Athletes are at increased risk of developing vitamin D deficiency during the execution of very demanding disciplines such as CrossFit®. Single-nucleotide polymorphisms (SNPs) may influence circulating 25-hydroxy-vitamin D (25(OH)D) levels. An observational, longitudinal pilot study was conducted with 50 trained males according to specific inclusion criteria. Blood samples were obtained to determine 25(OH)D, vitamin D-binding protein (VDBP), vitamin D-receptor (VDR)circulating levels, and the presence of SNPs after DNA isolation and genotyping: rs10741657 to CYP2R1, rs2282679 to GC and rs2228570 to VDR genes. Significant differences (p < 0.05) in 25(OH)D concentration were determined between the biallelic combinations of rs228679 (GC) and rs228570 (VDR). The VDBP and VDR proteins did not show different levels in the case of the rs10741657 (CYP2R1) alleles. Statistically significant weak positive correlations (p < 0.05) were observed between 25(OH)D and AA-alleles of the CYP2R1 and VDR genes, and TT-alleles of the GC gene. Additionally, AA (rs10741657 and rs2228570) and TT (rs2282679) have a probability between 2 and 4 of having major effects on the concentration of 25(OH)D. Conversely, GG alleles present a probability of suboptimal values of 25(OH)D of 69%, 34%, and 24% for VDR, GC, and CYP2R1, respectively, showing a strong moderate positive correlation (r = 0.41) between the degrees of sports performance and 25(OH)D plasma levels. CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs2228570) affect the concentration of serum 25(OH)D, as an indicator of vitamin D status and play a critical role in the sports performance of CrossFit® practitioners.
Journal Article
Vitamin D-binding protein deficiency: an underrecognized Mendelian disorder of vitamin D metabolism
2024
Vitamin D-binding protein (VDBP) deficiency is a recently discovered apparently benign biochemical disorder that can masquerade as treatment-resistant vitamin D deficiency and is likely underrecognized. We present the case of a child with persistently low 25OH vitamin D levels despite replacement therapy. Exome sequencing revealed a novel homozygous nonsense variant in the GC gene, leading to undetectable levels of VDBP. Interestingly, exome sequencing also revealed a homozygous loss-of-function variant in ZNF142, which likely explains the additional clinical features of recurrent febrile convulsions and global developmental delay. Our findings corroborate the two previously reported patients with autosomal recessive VDBP deficiency caused by biallelic GC variants and emphasize the importance of measuring VDBP levels in cases of apparent vitamin D deficiency that is treatment-resistant. We also urge caution in concluding “atypical” presentations without careful investigation of a potential dual molecular diagnosis.
Journal Article
Phenomewide Association Study of Health Outcomes Associated With the Genetic Correlates of 25 Hydroxyvitamin D Concentration and Vitamin D Binding Protein Concentration
2024
While it is known that vitamin D deficiency is associated with adverse bone outcomes, it remains unclear whether low vitamin D status may increase the risk of a wider range of health outcomes. We had the opportunity to explore the association between common genetic variants associated with both 25 hydroxyvitamin D (25OHD) and the vitamin D binding protein (DBP, encoded by the GC gene) with a comprehensive range of health disorders and laboratory tests in a large academic medical center. We used summary statistics for 25OHD and DBP to generate polygenic scores (PGS) for 66,482 participants with primarily European ancestry and 13,285 participants with primarily African ancestry from the Vanderbilt University Medical Center Biobank (BioVU). We examined the predictive properties of PGS25OHD, and two scores related to DBP concentration with respect to 1322 health-related phenotypes and 315 laboratory-measured phenotypes from electronic health records. In those with European ancestry: (a) the PGS25OHD and PGSDBP scores, and individual SNPs rs4588 and rs7041 were associated with both 25OHD concentration and 1,25 dihydroxyvitamin D concentrations; (b) higher PGS25OHD was associated with decreased concentrations of triglycerides and cholesterol, and reduced risks of vitamin D deficiency, disorders of lipid metabolism, and diabetes. In general, the findings for the African ancestry group were consistent with findings from the European ancestry analyses. Our study confirms the utility of PGS and two key variants within the GC gene (rs4588 and rs7041) to predict the risk of vitamin D deficiency in clinical settings and highlights the shared biology between vitamin D-related genetic pathways a range of health outcomes.
Journal Article
Vitamin D and Type 1 Diabetes Risk: A Systematic Review and Meta-Analysis of Genetic Evidence
by
Najjar, Liana
,
Hyppönen, Elina
,
Sutherland, Joshua
in
Adolescent
,
Adult
,
Amidohydrolases - genetics
2021
Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We conducted a systematic search of Medline, Embase, Web of Science and OpenGWAS updated in April 2021. The following keywords “vitamin D” and/or “single nucleotide polymorphisms (SNPs)” and “T1D” were selected to identify relevant articles. Seven SNPs (or their proxies) in six genes were analysed: CYP2R1 rs10741657, CYP2R1 (low frequency) rs117913124, DHCR7/NADSYN1 rs12785878, GC rs3755967, CYP24A1 rs17216707, AMDHD1 rs10745742 and SEC23A rs8018720. Seven case-control and three cohort studies were eligible for quantitative synthesis (n = 10). Meta-analysis results suggested no association with T1D (range of pooled ORs for all SNPs: 0.97–1.02; p > 0.01). Heterogeneity was found in DHCR7/NADSYN1 rs12785878 (I2: 64.8%, p = 0.02). Sensitivity analysis showed exclusion of any single study did not alter the overall pooled effect. No association with T1D was observed among a Caucasian subgroup. In conclusion, the evidence from the meta-analysis indicates a null association between selected variants affecting serum 25(OH)D concentrations and T1D.
Journal Article
Common genetic determinants of vitamin D insufficiency: a genome-wide association study
by
Spector, Timothy D
,
Arden, Nigel K
,
Vasan, Ramachandran S
in
Biological and medical sciences
,
Canada
,
Chemiluminescence
2010
Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency.
We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using
Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants.
Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1·9×10
−109 for rs2282679, in
GC); 11q12 (p=2·1×10
−27 for rs12785878, near
DHCR7); and 11p15 (p=3·3×10
−20 for rs10741657, near
CYP2R1). Variants at an additional locus (20q13,
CYP24A1) were genome-wide significant in the pooled sample (p=6·0×10
−10 for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2·47, 95% CI 2·20–2·78, p=2·3×10
−48) or lower than 50 nmol/L (1·92, 1·70–2·16, p=1·0×10
−26) compared with those in the lowest quartile.
Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency.
Full funding sources listed at end of paper (see Acknowledgments).
Journal Article
Vitamin D and Cardiovascular Disease: An Updated Narrative Review
by
März, Winfried
,
Pilz, Stefan
,
Theiler-Schwetz, Verena
in
Atherosclerosis
,
Calcification
,
Cardiomyocytes
2021
During the last two decades, the potential impact of vitamin D on the risk of cardiovascular disease (CVD) has been rigorously studied. Data regarding the effect of vitamin D on CVD risk are puzzling: observational data indicate an inverse nonlinear association between vitamin D status and CVD events, with the highest CVD risk at severe vitamin D deficiency; however, preclinical data and randomized controlled trials (RCTs) show several beneficial effects of vitamin D on the surrogate parameters of vascular and cardiac function. By contrast, Mendelian randomization studies and large RCTs in the general population and in patients with chronic kidney disease, a high-risk group for CVD events, largely report no significant beneficial effect of vitamin D treatment on CVD events. In patients with rickets and osteomalacia, cardiovascular complications are infrequently reported, except for an increased risk of heart failure. In conclusion, there is no strong evidence for beneficial vitamin D effects on CVD risk, either in the general population or in high-risk groups. Whether some subgroups such as individuals with severe vitamin D deficiency or a combination of low vitamin D status with specific gene variants and/or certain nutrition/lifestyle factors would benefit from vitamin D (metabolite) administration, remains to be studied.
Journal Article
Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death
by
Sealy, Robert E.
,
Jones, Bart G.
,
Marion, Tony N.
in
Animals
,
Chemokines
,
Communicable Diseases - genetics
2020
Vitamin A is an important regulator of immune protection, but it is often overlooked in studies of infectious disease. Vitamin A binds an array of nuclear receptors (e.g., retinoic acid receptor, peroxisome proliferator-activated receptor, retinoid X receptor) and influences the barrier and immune cells responsible for pathogen control. Children and adults in developed and developing countries are often vitamin A-deficient or insufficient, characteristics associated with poor health outcomes. To gain a better understanding of the protective mechanisms influenced by vitamin A, we examined immune factors and epithelial barriers in vitamin A deficient (VAD) mice, vitamin D deficient (VDD) mice, double deficient (VAD+VDD) mice, and mice on a vitamin-replete diet (controls). Some mice received insults, including intraperitoneal injections with complete and incomplete Freund’s adjuvant (emulsified with PBS alone or with DNA + Fus-1 peptide) or intranasal inoculations with Sendai virus (SeV). Both before and after insults, the VAD and VAD+VDD mice exhibited abnormal serum immunoglobulin isotypes (e.g., elevated IgG2b levels, particularly in males) and cytokine/chemokine patterns (e.g., elevated eotaxin). Even without insult, when the VAD and VAD+VDD mice reached 3–6 months of age, they frequently exhibited opportunistic ascending bacterial urinary tract infections. There were high frequencies of nephropathy (squamous cell hyperplasia of the renal urothelium, renal scarring, and ascending pyelonephritis) and death in the VAD and VAD+VDD mice. When younger VAD mice were infected with SeV, the predominant lesion was squamous cell metaplasia of respiratory epithelium in lungs and bronchioles. Results highlight a critical role for vitamin A in the maintenance of healthy immune responses, epithelial cell integrity, and pathogen control.
Journal Article