Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,689 result(s) for "Wnt Proteins - physiology"
Sort by:
Impaired Preadipocyte Differentiation in Human Abdominal Obesity: Role of Wnt, Tumor Necrosis Factor-α, and Inflammation
We examined preadipocyte differentiation in obese and nonobese individuals and the effect of cytokines and wingless-type MMTV (mouse mammary tumor virus) integration site family, member 3A (Wnt3a) protein on preadipocyte differentiation and phenotype. Abdominal subcutaneous adipose tissue biopsies were obtained from a total of 51 donors with varying BMI. After isolation of the adipose and stromalvascular cells, inflammatory cells (CD14- and CD45-positive cells) were removed by immune magnetic separation. CD133-positive cells, containing early progenitor cells, were also isolated and quantified. The CD14- and CD45-negative preadipocytes were cultured with tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, resistin, or Wnt3a with or without a differentiation cocktail. The number of preadipocytes able to differentiate to adipose cells was negatively correlated with both BMI and adipocyte cell size of the donors, whereas the number of CD133-positive cells was positively correlated with BMI, suggesting an impaired differentiation of preadipocytes in obesity. Cultured preadipocytes, like freshly isolated mature adipocytes, from obese individuals had an increased expression of mitogen-activated protein 4 kinase 4 (MAP4K4), which is known to inhibit peroxisome proliferator-activated receptor-gamma induction. TNF-alpha, but not IL-6 or resistin, increased Wnt10b, completely inhibited the normal differentiation of the preadipocytes, and instead induced a proinflammatory and macrophage-like phenotype of the cells. The apparent number of preadipocytes in the abdominal subcutaneous tissue that can undergo differentiation is reduced in obesity with enlarged fat cells, possibly because of increased MAP4K4 levels. TNF-alpha promoted a macrophage-like phenotype of the preadipocytes, including several macrophage markers. These results document the plasticity of human preadipocytes and the inverse relationship between lipid storage and proinflammatory capacity.
Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance
β-Catenin signaling controls the development and maintenance of the blood–brain barrier (BBB) and the blood–retina barrier (BRB), but the division of labor and degree of redundancy between the two principal ligand–receptor systems—the Norrin and Wnt7a/Wnt7b systems—are incompletely defined. Here, we present a loss-of-function genetic analysis of postnatal BBB and BRB maintenance in mice that shows striking threshold and partial redundancy effects. In particular, the combined loss of Wnt7a and Norrin or Wnt7a and Frizzled4 (Fz4) leads to anatomically localized BBB defects that are far more severe than observed with loss of Wnt7a, Norrin, or Fz4 alone. In the cerebellum, selective loss of Wnt7a in glia combined with ubiquitous loss of Norrin recapitulates the phenotype observed with ubiquitous loss of both Wnt7a and Norrin, implying that glia are the source of Wnt7a in the cerebellum. Tspan12, a coactivator of Norrin signaling in the retina, is also active in BBB maintenance but is less potent than Norrin, consistent with a model in which Tspan12 enhances the amplitude of the Norrin signal in vascular endothelial cells. Finally, in the context of a partially impaired Norrin system, the retina reveals a small contribution to BRB development from the Wnt7a/Wnt7b system. Taken together, these experiments define the extent of CNS region-specific cooperation for several components of the Norrin and Wnt7a/Wnt7b systems, and they reveal substantial regional heterogeneity in the extent to which partially redundant ligands, receptors, and coactivators maintain the BBB and BRB.
The complex world of WNT receptor signalling
Key Points There is bewildering complexity in WNT signal transduction at the cell surface. 19 WNT proteins couple to more than 15 receptors and co-receptors in seven protein families: Frizzled, low-density lipoprotein receptor-related protein 5 (LRP5) and LRP6, receptor Tyr kinase-like orphan receptor 1 (ROR1) and ROR2, protein Tyr kinase 7 (PTK7), receptor Tyr kinase (RYK), muscle skeletal receptor Tyr kinase (MUSK) and the heparan sulphate proteoglycans syndecan and glypican. Frizzled proteins act as principal WNT receptors and recruit different co-receptors to engage specific subpathways. WNT receptors and co-receptors are regulated intracellularly by phosphorylation, proteolytic processing and endocytosis. Endocytosis is a key mechanism, and WNT signalling requires endocytosis, endosomal signalosomes and multivesicular bodies. Agonists (R-spondins) and antagonists (Dickkopf-related protein 1 (DKK1) and Kremen) regulate receptor and co-receptor internalization to modulate WNT signalling. The R-spondin family of WNT agonists acts via downstream transmembrane proteins, inlcuding syndecans, Leu-rich repeat-containing G-protein coupled receptor 4 (LGR4) and LGR6 and transmembrane E3 ubiquitin ligases RNF43 and ZNRF3. Since the discovery of WNTs 30 years ago, it has become clear that this signalling pathway is incredibly complex, using more than 15 receptors and co-receptors. What has emerged is that these proteins form higher-order ligand–receptor complexes that transduce downstream signalling and influence numerous cellular processes. 30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand–receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.
WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis
ObjectiveBoth excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms.MethodsOsteoarthritis was induced by destabilisation of the medial meniscus in wild-type and WNT16-deficient mice. Molecular mechanisms and downstream effects were studied in vitro and in vivo in primary cartilage progenitor cells and primary chondrocytes. The pathway downstream of WNT16 was studied in primary chondrocytes and using the axis duplication assay in Xenopus.ResultsWNT16-deficient mice developed more severe osteoarthritis with reduced expression of lubricin and increased chondrocyte apoptosis. WNT16 supported the phenotype of cartilage superficial-zone progenitor cells and lubricin expression. Increased osteoarthritis in WNT16-deficient mice was associated with excessive activation of canonical WNT signalling. In vitro, high doses of WNT16 weakly activated canonical WNT signalling, but, in co-stimulation experiments, WNT16 reduced the capacity of WNT3a to activate the canonical WNT pathway. In vivo, WNT16 rescued the WNT8-induced primary axis duplication in Xenopus embryos.ConclusionsIn osteoarthritis, WNT16 maintains a balanced canonical WNT signalling and prevents detrimental excessive activation, thereby supporting the homeostasis of progenitor cells.
Wnt/beta-catenin pathway: modulating anticancer immune response
Wnt/β-catenin signaling, a highly conserved pathway through evolution, regulates key cellular functions including proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. The Wnt pathway mediates biological processes by a canonical or noncanonical pathway, depending on the involvement of β-catenin in signal transduction. β-catenin is a core component of the cadherin protein complex, whose stabilization is essential for the activation of Wnt/β-catenin signaling. As multiple aberrations in this pathway occur in numerous cancers, WNT-directed therapy represents an area of significant developmental therapeutics focus. The recently described role of Wnt/β-catenin pathway in regulating immune cell infiltration of the tumor microenvironment renewed the interest, given its potential impact on responses to immunotherapy treatments. This article summarizes the role of Wnt/β-catenin pathway in cancer and ongoing therapeutic strategies involving this pathway.
WNT-5A: signaling and functions in health and disease
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade
ObjectivesWnt16 is implicated in bone fracture and bone mass accrual both in animals and humans. However, its functional roles and molecular mechanism in chondrocyte differentiation and osteoarthritis (OA) pathophysiology remain largely undefined. In this study, we analysed its mechanistic association and functional relationship in OA progression in chondrocyte lineage.MethodsThe role of Wnt16 during skeletal development was examined by Col2a1-Wnt16 transgenic mice and Wnt16fl/fl;Col2a1-Cre (Wnt16-cKO) mice. OA progression was assessed by micro-CT analysis and Osteoarthritis Research Society International score after anterior cruciate ligament transection (ACLT) surgery with Wnt16 manipulation by adenovirus intra-articular injection. The molecular mechanism was investigated in vitro using 3D chondrocyte pellet culture and biochemical analyses. Histological analysis was performed in mouse joints and human cartilage specimens.ResultsWnt16 overexpression in chondrocytes in mice significantly inhibited chondrocyte hypertrophy during skeletal development. Wnt16 deficiency exaggerated OA progression, whereas intra-articular injection of Ad-Wnt16 markedly attenuated ACLT-induced OA. Cellular and molecular analyses showed that, instead of β-catenin and calcium pathways, Wnt16 activated the planar cell polarity (PCP) and JNK pathway by interacting mainly with AP2b1, and to a lesser extend Ror2 and CD146, and subsequently induced PTHrP expression through phosphor-Raptor mTORC1 pathway.ConclusionsOur findings indicate that Wnt16 activates PCP/JNK and crosstalks with mTORC1-PTHrP pathway to inhibit chondrocyte hypertrophy. Our preclinical study suggests that Wnt16 may be a potential therapeutic target for OA treatment.
Wnt5a Potentiates TGF-β Signaling to Promote Colonic Crypt Regeneration After Tissue Injury
Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkühn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-ß (TGF-ß) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.
Overcoming Wnt–β-catenin dependent anticancer therapy resistance in leukaemia stem cells
Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt–β-catenin and PI3K–Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate β-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt–β-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated β-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, β-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated β-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.Targeting resistant stem cells in leukaemia, Perry et al. show that doxorubicin at low doses decreases Akt-mediated β-catenin activity, downregulates expression of multiple immune-checkpoint genes and dampens tumorigenesis of leukaemia stem cells.
Regulation of self-renewal and differentiation by the intestinal stem cell niche
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt–villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.