Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Wnt-5a Protein - agonists"
Sort by:
Wnt/beta-catenin pathway: modulating anticancer immune response
Wnt/β-catenin signaling, a highly conserved pathway through evolution, regulates key cellular functions including proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. The Wnt pathway mediates biological processes by a canonical or noncanonical pathway, depending on the involvement of β-catenin in signal transduction. β-catenin is a core component of the cadherin protein complex, whose stabilization is essential for the activation of Wnt/β-catenin signaling. As multiple aberrations in this pathway occur in numerous cancers, WNT-directed therapy represents an area of significant developmental therapeutics focus. The recently described role of Wnt/β-catenin pathway in regulating immune cell infiltration of the tumor microenvironment renewed the interest, given its potential impact on responses to immunotherapy treatments. This article summarizes the role of Wnt/β-catenin pathway in cancer and ongoing therapeutic strategies involving this pathway.
The WNT5A Agonist Foxy5 Reduces the Number of Colonic Cancer Stem Cells in a Xenograft Mouse Model of Human Colonic Cancer
The wingless-type mammary tumour virus integration site 5A (WNT5A) agonist Foxy5 was shown in vitro to affect intracellular signalling implicated in the regulation of colonic cancer stem cells (CSCs). In order to study whether Foxy5 can modulate CSCs, either HT-29 or Caco-2 human colonic cancer cells, both lacking endogenous WNT5A expression, were inoculated subcutaneously into nude mice. Foxy5 reduced the expression of the stem-cell marker aldehyde dehydrogenase and, interestingly, the specific colon CSC marker double cortin-like kinase 1. Foxy5 also reduced active β-catenin and the expression of its downstream target Achaete Scute complex homolog 2, a CSC-preserving transcription factor. Foxy5 also reduced cyclo-oxygenase 2 expression, responsible for the formation of the CSC-promoting prostaglandin E (PGE ), but increased that of 15-hydroxyprostaglandin dehydrogenase expression, a PGE -degrading enzyme. Accordingly, Foxy5 impairs both β-catenin and PGE signalling, both of which have been implicated in promoting the niche of colonic CSCs. Our data suggest that Foxy5 can complement the traditional adjuvant chemotherapeutic treatment to which CSCs are resistant.
The nuclear hormone receptor PPARγ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells
Vascular calcification is a hallmark of advanced atherosclerosis. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells of low density lipoprotein receptor (LDLr)-deficient mice fed an atherogenic diet high in cholesterol, accelerates vascular calcification with chondrogenic metaplasia within the lesions. Vascular calcification in the absence of PPARγ requires expression of the transmembrane receptor LDLr-related protein-1 in vascular smooth muscle cells. LDLr-related protein-1 promotes a previously unknown Wnt5a-dependent prochondrogenic pathway. We show that PPARγ protects against vascular calcification by inducing the expression of secreted frizzled-related protein-2, which functions as a Wnt5a antagonist. Targeting this signalling pathway may have clinical implications in the context of common complications of atherosclerosis, including coronary artery calcification and valvular sclerosis. Vascular calcification is commonly associated with advanced stages of atherosclerosis. Woldt et al . show that the nuclear hormone receptor PPARγ in vascular smooth muscle cells protects mice from vascular calcification by inhibiting Wnt5a signalling triggered by activation of the cell-surface receptor LRP1.
Thiazolidinediones Promote Axonal Growth through the Activation of the JNK Pathway
The axon is a neuronal process involved in protein transport, synaptic plasticity, and neural regeneration. It has been suggested that their structure and function are profoundly impaired in neurodegenerative diseases. Previous evidence suggest that Peroxisome Proliferator-Activated Receptors-γ (PPARγ promote neuronal differentiation on various neuronal cell types. In addition, we demonstrated that activation of PPARγby thiazolidinediones (TZDs) drugs that selectively activate PPARγ prevent neurite loss and axonal damage induced by amyloid-β (Aβ). However, the potential role of TZDs in axonal elongation and neuronal polarity has not been explored. We report here that the activation of PPARγ by TZDs promoted axon elongation in primary hippocampal neurons. Treatments with different TZDs significantly increased axonal growth and branching area, but no significant effects were observed in neurite elongation compared to untreated neurons. Treatment with PPARγ antagonist (GW 9662) prevented TZDs-induced axonal growth. Recently, it has been suggested that the c-Jun N-terminal kinase (JNK) plays an important role regulating axonal growth and neuronal polarity. Interestingly, in our studies, treatment with TZDs induced activation of the JNK pathway, and the pharmacological blockage of this pathway prevented axon elongation induced by TZDs. Altogether, these results indicate that activation of JNK induced by PPARγactivators stimulates axonal growth and accelerates neuronal polarity. These novel findings may contribute to the understanding of the effects of PPARγ on neuronal differentiation and validate the use of PPARγ activators as therapeutic agents in neurodegenerative diseases.