Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"alpha-2-Antiplasmin - pharmacology"
Sort by:
Reciprocal Modulation of Surface Expression of Annexin A2 in a Human Umbilical Vein Endothelial Cell-Derived Cell Line by Eicosapentaenoic Acid and Docosahexaenoic Acid
by
Kawamoto, Jun
,
Yamaura, Takayuki
,
Sato, Satoshi B.
in
alpha-2-Antiplasmin - pharmacology
,
Annexin A2 - genetics
,
Annexin A2 - metabolism
2014
Annexin A2 (ANXA2), a member of the annexin family of cytosolic Ca(2+)-binding proteins, plays a pivotal role in vascular biology. Small amounts of this protein and S100A10 protein are exposed on the surface of endothelial cells (ECs). They control fibrinolysis by recruiting tissue-type and urokinase-type plasminogen activators from the plasma. Nutritional studies indicate that two major long-chain polyunsaturated fatty acids (PUFAs), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), provide benefits for EC functions. The effects of EPA and DHA on the plasminogen/plasmin system have not been characterized.
Proteomic analysis of a cultured human umbilical vein EC-derived cell line, HUV-EC-C, showed that cell-associated ANXA2 decreased with EPA treatment and increased with DHA. A small fraction of ANXA2 was bound to the cell surface, which was also affected by these PUFAs following the same trends. Cell surface expression was negatively regulated by protein kinase C (PKC) α-mediated Ser-phosphorylation, which was up- and down-regulated by EPA and DHA, respectively. These PUFAs differentially affected a small fraction of caveolae/rafts-associated ANXA2. In addition to chymotrypsin-like activity in the serum, newly activated plasmin cleaved the ANXA2 on the cell surface at distinct sites in the N-terminal sequence. ANXA2 also bound to membranes released in the medium, which was similarly processed by these proteases. Both the PUFAs did not directly affect the release.
These results suggest that EPA and DHA reciprocally control cell surface location of ANXA2. Moreover, cleavage of this protein by plasmin likely resulted in autodigestion of the platform for formation of this protease. In conjunction with termination of the proteolysis by rapid inactivation of plasmin by α-2-antiplasmin and other polypeptide inhibitors, this feedback mechanism may emphasize the benefits of these PUFA in regulation of the initiation of fibrinolysis on the surface of ECs.
Journal Article
Generation and characterization of monoclonal antibodies against the N-terminus of alpha-2-antiplasmin
by
Brouwers, Els
,
Declerck, Paul J.
,
Abdul, Shiraazkhan
in
alpha-2-Antiplasmin - analysis
,
alpha-2-Antiplasmin - genetics
,
alpha-2-Antiplasmin - immunology
2018
Around 70% of circulating alpha-2-antiplasmin (α2AP), the main natural plasmin inhibitor, is N-terminally cleaved between residues Pro12 and Asn13 by antiplasmin-cleaving enzyme. This converts native Met-α2AP into the more potent fibrinolysis inhibitor Asn-α2AP. The Arg6Trp (R6W) polymorphism affects the N-terminal cleavage rate of Met-α2AP in a purified system, with ~8-fold faster conversion of Met(R6)-α2AP than Met(W6)-α2AP. To date, assays to determine N-terminally intact Met-α2AP in plasma have been limited to an ELISA that only measures Met(R6)-α2AP. The aim of this study was to generate and characterize monoclonal antibodies (mAbs) against Met(R6)-α2AP, Met(W6)-α2AP and all α2AP forms (total-α2AP) in order to develop specific Met(R6)-α2AP and Met(W6)-α2AP ELISAs. Recombinant Met(R6)-α2AP, Met(W6)-α2AP and Asn-α2AP were expressed in Drosophila S2 cells. Using hybridoma technology, a panel of 25 mAbs was generated against a mixture of recombinant Met(R6)-α2AP and Met(W6)-α2AP. All mAbs were evaluated for their specific reactivity using the three recombinant α2APs in one-site non-competitive ELISAs. Three mAbs were selected to develop sandwich-type ELISAs. MA-AP37E2 and MA-AP34C4 were selected for their specific reactivity against Met(R6)-α2AP and Met(W6)-α2AP, respectively, and used for coating. MA-AP15D7 was selected for its reactivity against total-α2AP and used for detection. With the novel ELISAs we determined Met(R6)-α2AP and Met(W6)-α2AP levels in plasma samples and we showed that Met(R6)-α2AP was converted faster into Asn-α2AP than Met(W6)-α2AP in a plasma milieu. In conclusion, we developed two specific ELISAs for Met(R6)-α2AP and Met(W6)-α2AP, respectively, in plasma. This will enable us to determine N-terminal heterogeneity of α2AP in plasma samples.
Journal Article
A direct oral anticoagulant edoxaban accelerated fibrinolysis via enhancement of plasmin generation in human plasma: dependent on thrombin-activatable fibrinolysis inhibitor
2019
A direct oral anticoagulant, edoxaban, is as effective as vitamin K antagonists for the treatment of venous thromboembolism (VTE). However, the mechanism underlying the treatment effect on VTE remains to be determined. The aims of this study were to evaluate the effect of edoxaban on tissue plasminogen activator (t-PA)-induced clot lysis in human plasma and to determine the roles of plasmin and thrombin-activatable fibrinolysis inhibitor (TAFI) in the profibrinolytic effect by edoxaban. Pooled human normal plasma or TAFI-deficient plasma (containing 180 ng/mL t-PA and 0.1 nM thrombomodulin) was mixed with edoxaban or an activated TAFI inhibitor, potato tuber carboxypeptidase inhibitor (PCI). Clot was induced by adding tissue factor and phospholipids. Clot lysis time and plasma plasmin-α2 antiplasmin complex (PAP) concentration were determined. Clot structure was imaged with a scanning electron microscope. In normal plasma, edoxaban at clinically relevant concentrations (75, 150, and 300 ng/mL) and PCI significantly shortened clot lysis time. PCI increased PAP concentration and a correlation between PAP concentration and percent of clot lysis was observed. Edoxaban also dose-dependently elevated PAP concentration. In TAFI-deficient plasma, the effects of edoxaban and PCI on clot lysis and PAP concentration were markedly diminished as compared with normal plasma. Fibrin fibers were thinner in clots formed in the presence of edoxaban. In conclusion, edoxaban at clinically relevant concentrations accelerates t-PA-induced fibrinolysis via increasing plasmin generation in human plasma. The effects of edoxaban is mainly dependent on TAFI. The profibrinolytic effect of edoxaban might contribute to the efficacy for the treatment of VTE.
Journal Article
Plasmin and regulators of plasmin activity control the migratory capacity and adhesion of human T cells and dendritic cells by regulating cleavage of the chemokine CCL21
by
Greenwood, David R
,
Middleditch, Martin J
,
Loef, Evert Jan
in
alpha-2-Antiplasmin - pharmacology
,
Amino Acid Sequence
,
Cell Adhesion - drug effects
2016
The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface‐bound and soluble forms. Here we show that plasmin cleaves surface‐bound CCL21 to release the C‐terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form. Loss of this anchoring peptide enabled the chemotactic activity of CCL21 and reduced cell tethering. Tissue plasminogen activator did not cleave CCL21 directly but enhanced CCL21 processing through generation of plasmin from plasminogen. The tissue plasminogen activator inhibitor neuroserpin prevented processing of CCL21 and blocked the effects of soluble CCL21 on cell migration. Similarly, the plasmin‐specific inhibitor α2‐antiplasmin inhibited CCL21‐mediated migration of human T cells and dendritic cells and tethering of T cells to APCs. We conclude that the plasmin system proteins plasmin, tissue plasminogen activator and neuroserpin regulate CCL21 function in the immune system by controlling the balance of matrix‐ and cell‐bound CCL21.
Journal Article
Plasminogen Activation Induced Pericellular Fibronectin Proteolysis Promotes Fibroblast Apoptosis
by
Thannickal, Victor J
,
Rogers, David S
,
Simon, Richard H
in
alpha-2-Antiplasmin - pharmacology
,
Animals
,
Apoptosis - drug effects
2008
Apoptosis of fibroblasts/myofibroblasts is a critical event in the resolution of tissue repair responses; however, mechanisms for the regulation of (myo)fibroblast apoptosis/survival remain unclear. In this study, we demonstrate counter-regulatory interactions between the plasminogen activation system and transforming growth factor-beta1 (TGF-beta1) in the control of fibroblast apoptosis. Plasmin treatment induced fibroblast apoptosis in a time- and dose-dependent manner in association with proteolytic degradation of extracellular matrix proteins, as detected by the release of soluble fibronectin peptides. Plasminogen, which was activated to plasmin by fibroblasts, also induced fibronectin proteolysis and fibroblast apoptosis, both of which were blocked by alpha2-antiplasmin but not by inhibition of matrix metalloproteinase activity. TGF-beta1 protected fibroblasts from apoptosis induced by plasminogen but not from apoptosis induced by exogenous plasmin. The protection from plasminogen-induced apoptosis conferred by TGF-beta1 is associated with the up-regulation of plasminogen activator-1 (PAI-1) expression and inhibition of plasminogen activation. Moreover, lung fibroblasts from mice genetically deficient in PAI-1 lose the protective effect of TGF-beta1 against plasminogen-induced apoptosis. These findings support a novel role for the plasminogen activation system in the regulation of fibroblast apoptosis and a potential role of TGF-beta1/PAI-1 in promoting (myo)fibroblast survival in chronic fibrotic disorders.
Journal Article
Inhibitory effect of angiostatins on activity of the plasminogen/plasminogen activator system
by
Aisina, R. B
,
Mukhametova, L. I
,
Levashov, M. Y
in
alpha-2-Antiplasmin - pharmacology
,
Angiostatins - pharmacology
,
Biochemistry
2009
Angiostatins, kringle-containing fragments of plasminogen, are potent inhibitors of angiogenesis. Effects of three angiostatin forms, K1-3, K1-4, and K1-4.5 (0-2 µM), on the rate of native Glu-plasminogen activation by its physiological activators in the absence or presence of soluble fibrin were investigated in vitro. Angiostatins did not affect the intrinsic amidolytic activities of plasmin and plasminogen activators of tissue type (tPA) and urokinase type (single-chain scuPA and two-chain tcuPA), but inhibited conversion of plasminogen to plasmin in a dose-dependent manner. All three angiostatins suppressed Glu-plasminogen activation by tcuPA independently of the presence of fibrin, and the inhibitory effect increased in the order: K1-3 < K1-4 < K1-4.5. The inhibitory effects of angiostatins on the scuPA activator activity were lower and further decreased in the presence of fibrin. Angiostatin K1-3 (up to 2 µM) had no effect, while 2 µM angiostatins K1-4 and K1-4.5 inhibited the fibrin-stimulated Glu-plasminogen activation by tPA by 50 and 100%, respectively. The difference in effects of the three angiostatins on the Glu-plasminogen activation by scuPA, tcuPA, and tPA in the absence or presence of fibrin is due to the differences in angiostatin structures, mechanisms of action, and fibrin-specificity of plasminogen activators, as well as due to the influence of fibrin on the Glu-plasminogen conformation. Angiostatins in vivo, which mimic plasminogen-binding activity, can inhibit plasminogen activation stimulated by various proteins (including fibrin) of extracellular matrix, thereby blocking cell migration and angiogenesis. The data of this work indicate that the inhibition of Glu-plasminogen activation under the action of physiological plasminogen activators by angiostatins can be implicated in the complex mechanism of their antiangiogenic and antitumor action.
Journal Article
Plasmin-Independent Gelatinase B (Matrix Metalloproteinase-9) Release by Monocytes under the Influence of Urokinase
by
Timofeyeva, A. V.
,
Elizarova, E. P.
,
Bobik, A.
in
alpha-2-Antiplasmin - pharmacology
,
Aprotinin - pharmacology
,
Cells, Cultured
2001
It is shown that the release of matrix metalloproteinase-9 (gelatinase B) by THP-1 and U937 cells into conditioned media is increased under the action of recombinant single-chain urokinase. This effect is not accompanied by proteolytic activation of gelatinase B and is related to release of a pro-form of the enzyme. The action of urokinase on monocytes is time-dependent and becomes significant 12-24 h after the beginning of cell incubation. The dependence of the effect on the concentration of urokinase is characterized by half-maximum at about 20 nM and saturation at about 200 nM. The urokinase-induced gelatinase B release is not dependent on the action of plasmin because plasmin inhibitors aprotinin and alpha2-antiplasmin do not abolish this action. Additionally, tissue type plasminogen activator does not induce gelatinase B release by monocytes as observed under the action of urokinase. Nevertheless, the catalytic activity of urokinase participates in the development of the observed effect because it is significantly depressed by the natural urokinase inhibitor PAI-1. The effect of urokinase is completely abolished by actinomycin D and cycloheximide, indicating the participation of transcription and translation processes in its development.
Journal Article
Plasmin regulates the activation of cell-associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin injury
by
Khalil, N
,
Whitman, C
,
Corne, S
in
alpha-2-Antiplasmin - pharmacology
,
Animals
,
Biological Transport - drug effects
1996
Transforming growth factor beta s (TGF-beta s) are 25-kD multifunctional proteins that regulate inflammation and connective tissue synthesis. With rare exception TGF-beta 1 is secreted noncovalently bound to a latency-associated peptide (LAP) that renders the mature TGF-beta 1 biologically inactive. An important mechanism for the control of TGF-beta 1 action is the regulation of the post-translational processing that removes the LAP from the mature peptide and renders it biologically active. In a model of pulmonary inflammation and fibrosis induced by the antineoplastic antibiotic, bleomycin, we have demonstrated that explanted alveolar macrophages secrete progressively increasing quantities of a biologically active form of TGF-beta 1, the secretion of which was maximal 7 days after bleomycin administration. Thereafter, there was a rapid decline in the secretion of the active form of TGF-beta 1, whereas the latent form continued to be secreted in elevated quantities. Plasmin, a serine protease, was transiently generated by the same bleomycin-activated alveolar macrophages and paralleled the rise in active TGF-beta 1. When alpha 2-antiplasmin, an inhibitor of plasmin, was added to cultures of alveolar macrophages, the post-translational activation of L-TGF-beta 1, was totally abrogated. When plasmin was added to alveolar macrophages in culture, there was complete activation of the L-TGF-beta 1 that had been secreted during the culture period. However, there was no effect of plasmin on the same alveolar macrophage-derived L-TGF-beta 1 in cell-free conditioned media. Our findings suggest that the secretion of an active form of TGF-beta 1 by alveolar macrophages is regulated by the generation of plasmin and requires that the alveolar macrophages be present. Because the diminution of active TGF-beta 1 coincides with the resolution of inflammation, this suggests that the availability of plasmin regulates the biologically active form of TGF-beta 1, and thus, the inflammation seen after bleomycin-induced lung injury.
Journal Article
α2-antiplasmin positively regulates endothelial-to-mesenchymal transition and fibrosis progression in diabetic nephropathy
by
Osamu Matsuo
,
Momoko Hirota
,
Kei-ichi Ozaki
in
Advanced glycosylation end products
,
alpha-2-Antiplasmin
,
alpha-2-Antiplasmin - genetics
2022
Background
Diabetic nephropathy (DN), is microvascular complication of diabetes causes to kidney dysfunction and renal fibrosis. It is known that hyperglycemia and advanced glycation end products (AGEs) produced by hyperglycemic condition induce myofibroblast differentiation and endothelial-to-mesenchymal transition (EndoMT), and exacerbate fibrosis in DN. Recently, we demonstrated that α2-antiplasmin (α2AP) is associated with inflammatory response and fibrosis progression.
Methods
We investigated the role of α2AP on fibrosis progression in DN using a streptozotocin-induced DN mouse model.
Results
α2AP deficiency attenuated EndoMT and fibrosis progression in DN model mice. We also showed that the high glucose condition/AGEs induced α2AP production in fibroblasts (FBs), and the reduction of receptor for AGEs (RAGE) by siRNA attenuated the AGEs-induced α2AP production in FBs. Furthermore, the bloackade of α2AP by the neutralizing antibody attenuated the high glucose condition-induced pro-fibrotic changes in FBs. On the other hand, the hyperglycemic condition/AGEs induced EndoMT in vascular endothelial cells (ECs), the FBs/ECs co-culture promoted the high glucose condition-induced EndoMT compared to ECs mono-culture. Furthermore, α2AP promoted the AGEs-induced EndoMT, and the blockade of α2AP attenuated the FBs/ECs co-culture-promoted EndoMT under the high glucose condition.
Conclusions
The high glucose conditions induced α2AP production, and α2AP is associated with EndoMT and fibrosis progression in DN. These findings provide a basis for clinical strategies to improve DN.
Journal Article
PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration
2023
The formation of diabetic ulcers (DU) is a common complication for diabetic patients resulting in serious chronic wounds. There is therefore, an urgent need for complex treatment of this problem. This study examines a bioactive wound dressing of a biodegradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) covered by a thin fibrin layer for sustained delivery of bioactive molecules.
Electrospun PLCL/PCL nanofibers were coated with fibrin-based coating prepared by a controlled technique and enriched with human platelet lysate (hPL), fibroblast growth factor 2 (FGF), and vascular endothelial growth factor (VEGF). The coating was characterized by scanning electron microscopy and fluorescent microscopy. Protein content and its release rate and the effect on human saphenous vein endothelial cells (HSVEC) were evaluated.
The highest protein amount is achieved by the coating of PLCL/PCL with a fibrin mesh containing 20% v/v hPL (NF20). The fibrin coating serves as an excellent scaffold to accumulate bioactive molecules from hPL such as PDGF-BB, fibronectin (Fn), and α-2 antiplasmin. The NF20 coating shows both fast and a sustained release of the attached bioactive molecules (Fn, VEGF, FGF). The dressing significantly increases the viability of human saphenous vein endothelial cells (HSVECs) cultivated on a collagen-based wound model. The exogenous addition of FGF and VEGF during the coating procedure further increases the HSVECs viability. In addition, the presence of α-2 antiplasmin significantly stabilizes the fibrin mesh and prevents its cleavage by plasmin.
The NF20 coating supplemented with FGF and VEGF provides a promising wound dressing for the complex treatment of DU. The incorporation of various bioactive molecules from hPL and growth factors has great potential to support the healing processes by providing appropriate stimuli in the chronic wound.
Journal Article