Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
693,788 result(s) for "cold"
Sort by:
What a cold needs
\"Playful text and cozy illustrations explore the unavoidable stages of dealing with a cold.\"-- Provided by publisher.
Cold war cultures
The Cold War was not only about the imperial ambitions of the super powers, their military strategies, and antagonistic ideologies. It was also about conflicting worldviews and their correlates in the daily life of the societies involved. The term \"Cold War Culture\" is often used in a broad sense to describe media influences, social practices, and symbolic representations as they shape, and are shaped by, international relations. Yet, it remains in question whether - or to what extent - the Cold War Culture model can be applied to European societies, both in the East and the West. While every European country had to adapt to the constraints imposed by the Cold War, individual development was affected by specific conditions as detailed in these chapters. This volume offers an important contribution to the international debate on this issue of the Cold War impact on everyday life by providing a better understanding of its history and legacy in Eastern and Western Europe.
Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation
• The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. • We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. • Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. • The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Nature and the Iron Curtain : environmental policy and social movements in Communist and capitalist countries, 1945-1990
\"Nature and the Iron Curtain contrasts communist and capitalist countries with respect to their environmental politics in the context of the Cold War. Its chapters draw from archives across Europe and the U.S. to present new perspectives on the origins and evolution of modern environmentalism on both sides of the Iron Curtain. The book explores similarities and differences among several nations with different economies and political systems, and highlights connections between environmental movements in Eastern and Western Europe\"-- Dust jacket.
Transcriptomic analyses provide molecular insight into the cold stress response of cold-tolerant alfalfa
Background Daye No.3 is a novel cultivar of alfalfa ( Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. Results A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. Conclusions Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.
Defending democracy in cold war Finland : British and American propaganda and cultural diplomacy in Finland, 1944-1970
In 'Defending Democracy in Cold War Finland', Marek Fields offers a thorough account on the various informational and cultural strategies Britain and the United States used during the early Cold War decades in order to increase their influence and contain communism in Finland. The book shows that by using propaganda and cultural diplomacy in an exceptionally challenging environment, the two Western powers were able to achieve their main objectives in the region, i.e. to defend democracy and strengthen Finland?s attachment to the West, surprisingly well. Making use of a large variety of British, American and Finnish archives, Fields proves that the Western countries? interest in Finland during the Cold War was stronger than it has previously been realised.
Champions of winter survival
Evergreen conifers are champions of winter survival, based on their remarkable ability to acclimate to cold and develop cold hardiness. Counterintuitively, autumn cold acclimation is triggered not only by exposure to low temperature, but also by a combination of decreasing temperature, decreasing photoperiod and changes in light quality. These environmental cues control a network of signaling pathways that coordinate cold acclimation and cold hardiness in overwintering conifers, leading to cessation of growth, bud dormancy, freezing tolerance and changes in energy metabolism. Advances in genomic, transcriptomic and metabolomic tools for conifers have improved our understanding of how trees sense and respond to changes in temperature and light during cold acclimation and the development of cold hardiness, but there remain considerable gaps deserving further research in conifers. In the first section of this review, we focus on the physiological mechanisms used by evergreen conifers to adjust metabolism seasonally and to protect overwintering tissues against winter stresses. In the second section, we review how perception of low temperature and photoperiod regulate the induction of cold acclimation. Finally, we explore the evolutionary context of cold acclimation in conifers and evaluate challenges imposed on them by changing climate and discuss emerging areas of research in the field.