Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,134 result(s) for "diacylglycerols"
Sort by:
Structure and mechanism of human diacylglycerol O-acyltransferase 1
Diacylglycerol O -acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans 1 . DGAT1 belongs to the membrane-bound O -acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins 2 , 3 . How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity. The structure of human diacylglycerol O -acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.
Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils
Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils. Triacylglycerol remodeling in Physaria fendleri changes the seed oil fatty acid composition after initial synthesis to overcome metabolic bottlenecks in the accumulation of valuable unusual fatty acids. This process enhances designer oil engineering.
DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress
Plants accumulate the lipids phosphatidic acid (PA), diacylglycerol (DAG), and triacylglycerol (TAG) during cold stress, but how plants balance the levels of these lipids to mediate cold responses remains unknown. The enzymes ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE (DGAT) and DIACYLGLYCEROL KINASE (DGK) catalyze the conversion of DAG to TAG and PA, respectively. Here, we show that DGAT1, DGK2, DGK3, and DGK5 contribute to the response to cold in Arabidopsis (Arabidopsis thaliana). With or without cold acclimation, the dgat1 mutants exhibited higher sensitivity upon freezing exposure compared with the wild type. Under cold conditions, the dgat1 mutants showed reduced expression of C-REPEAT/DRE BINDING FACTOR2 and its regulons, which are essential for the acquisition of cold tolerance. Lipid profiling revealed that freezing significantly increased the levels of PA and DAG while decreasing TAG in the rosettes of dgat1 mutant plants. During freezing stress, the accumulation of PA in dgat1 plants stimulated NADPH oxidase activity and enhanced RbohD-dependent hydrogen peroxide production compared with the wild type. Moreover, the cold-inducible transcripts of DGK2, DGK3, and DGK5 were significantly more up-regulated in the dgat1 mutants than in the wild type during cold stress. Consistent with this observation, dgk2, dgk3, and dgk5 knockout mutants showed improved tolerance and attenuated PA production in response to freezing temperatures. Our findings demonstrate that the conversion of DAG to TAG by DGAT1 is critical for plant freezing tolerance, acting by balancing TAG and PA production in Arabidopsis.
Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction
The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme
Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases 1 . Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes 2 – 4 , the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O -acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 Å resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 Å shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density—possibly representing an acyl-acceptor molecule—is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT. Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.
A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth
Diacylglycerol kinases (DGKs) play a major role in the production of phosphatidic acid (PtdOH) and were implicated in endomembrane trafficking and signalling cascades. In plants, the role of DGKs is less clear, as PtdOH seems to arise mostly from phospholipase D activity. Here, we investigated the function of the Arabidopsis gene encoding DGK4, which is highly expressed in pollen. In vitro, pollen tubes from homozygous dgk4 plants showed normal morphology, but reduced growth rate and altered stiffness and adhesion properties (revealed by atomic force microscopy). In vivo, dgk4 pollen was able to fertilize wild-type ovules, but self-pollination in dgk4 plants led to fewer seeds and shorter siliques. Phenotypic analysis revealed that the dgk4 mutation affects not only the male germ line but also the vegetative tissue. DGK4-green fluorescent protein fusion imaging revealed a cytosolic localization with a slightly higher signal in the subapical or apical region. dgk4 pollen tubes were found to exhibit perturbations in membrane recycling, and lipid analysis revealed a minor increase of PtdOH concomitant with decreased phosphatidylcholine, compared with wild-type. In vitro, DGK4 was found to exhibit kinase and guanylyl cyclase activity. Quantitative PCR data revealed downregulation of genes related to actin dynamics and phosphoinositide metabolism in mutant pollen, but upregulation of the DGK6 isoform. Altogether, these results are discussed considering a role of DGK4 in signalling cross-talk.
Diacylglycerol kinase and associated lipid mediators modulate rice root architecture
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA), and both DAG and PA are lipid mediators in the cell. Here we show that DGK1 in rice (Oryza sativa) plays important roles in root growth and development. Two independent OsDGK1-knockout (dgk1) lines exhibited a higher density of lateral roots (LRs) and thinner seminal roots (SRs), whereas OsDGK1-overexpressing plants displayed a lower LR density and thicker SRs than wild-type (WT) plants. Overexpression of OsDGK1 led to a decline in the DGK substrate DAG whereas specific PA species decreased in dgk1 roots. Supplementation of DAG to OsDGK1-overexpressing seedlings restored the LR density and SR thickness whereas application of PA to dgk1 seedlings restored the LR density and SR thickness to those of the WT. In addition, treatment of rice seedlings with the DGK inhibitor R59022 increased the level of DAG and decreased PA, which also restored the root phenotype of OsDGK1-overexpressing seedlings close to that of the WT. Together, these results indicate that DGK1 and associated lipid mediators modulate rice root architecture; DAG promotes LR formation and suppresses SR growth whereas PA suppresses LR number and promotes SR thickness.
ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials
Alterations in lipid metabolism might contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, no pharmacological agents are currently approved in the United States or the European Union for the treatment of NAFLD. Two parallel phase 2a studies investigated the effects of liver-directed ACC1/2 inhibition in adults with NAFLD. The first study ( NCT03248882 ) examined the effects of monotherapy with a novel ACC1/2 inhibitor, PF-05221304 (2, 10, 25 and 50 mg once daily (QD)), versus placebo at 16 weeks of treatment; the second study ( NCT03776175 ) investigated the effects of PF-05221304 (15 mg twice daily (BID)) co-administered with a DGAT2 inhibitor, PF-06865571 (300 mg BID), versus placebo after 6 weeks of treatment. The primary endpoint in both studies was percent change from baseline in liver fat assessed by magnetic resonance imaging–proton density fat fraction. Dose-dependent reductions in liver fat reached 50–65% with PF-05221304 monotherapy doses ≥10 mg QD; least squares mean (LSM) 80% confidence interval (CI) was −7.2 (−13.9, 0.0), −17.1 (−22.7, −11.1), −49.9 (−53.3, −46.2), −55.9 (−59.0, −52.4) and −64.8 (−67.5, −62.0) with 16 weeks placebo and PF-05221304 2, 10, 25 and 50 mg QD, respectively. The overall incidence of adverse events (AEs) did not increase with increasing PF-05221304 dose, except for a dose-dependent elevation in serum triglycerides (a known consequence of hepatic acetyl-coenzyme A carboxylase (ACC) inhibition) in 23/305 (8%) patients, leading to withdrawal in 13/305 (4%), and a dose-dependent elevation in other serum lipids. Co-administration of PF-05221304 and PF-06865571 lowered liver fat compared to placebo (placebo-adjusted LSM (90% CI) −44.6% (−54.8, −32.2)). Placebo-adjusted LSM (90% CI) reduction in liver fat was −44.5% (−55.0, −31.7) and −35.4% (−47.4, −20.7) after 6 weeks with PF-05221304 or PF-06865571 alone. AEs were reported for 10/28 (36%) patients after co-administered PF-05221304 and PF-06865571, with no discontinuations due to AEs, and the ACC inhibitor-mediated effect on serum triglycerides was mitigated, suggesting that PF-05221304 and PF-06865571 co-administration has the potential to address some of the limitations of ACC inhibition alone. Two phase 2a trials demonstrate the efficacy of a new ACC inhibitor (PF 05221304) for reducing liver fat in patients with NAFLD, with co-administration of a DGAT2 inhibitor (PF-06865571) mitigating ACC inhibitor-mediated increases in serum triglycerides.
The expression of diacylglycerol kinase isoforms α and ζ correlates with the progression of experimental autoimmune encephalomyelitis in rats
Multiple sclerosis (MS) is characterized by neuroinflammation and neurodegeneration, whose precise processes are not fully understood. Diacylglycerol kinase (DGK) isozymes of α, β, γ and ζ expressed abundantly in the brain and/or the immune system, may be regulatory targets for MS. In this study, we analyzed the four DGK isozymes along the induction, peak and recovery phases in an experimental autoimmune encephalomyelitis (EAE) rat model of MS. The expression of these DGK isozymes and the diacylglycerol (DAG) pathway in the EAE rat brainstems were analyzed by qRT-PCR, immunohistochemistry, immunofluorescence double staining, western blotting and ELISA. Our results showed that the mRNA content of the four DGK isozymes decreased significantly, and their immunoreactivity in myelin sheathes (DGKα, β) and neurons (DGKγ, ζ) became weaker at the beginning of the induction phase. With the progressive increase in clinical signs, DGKα, DGKγ and DGKζ mRNA increased and DGKβ mRNA decreased, and microglia were involved in the formation of perivascular cuffing. In the peak phase, both DGKα and DGKζ were expressed in neurons and inflammatory cells, and DGKζ was also positive in microglia. During the recovery phase, the mRNA content and immunoreactivity of these DGK isozymes generally reached normal levels. Moreover, our results revealed that changes in DAG accumulation and PKCδ phosphorylation were almost the same as those of DGKα and DGKζ mRNA. In summary, the four DGK isozymes are involved in the EAE process. The predominant and broad presence of DGKα and DGKζ suggests that they may regulate the pathological process by attenuating DAG/PKCδ pathway signaling during EAE evolution.
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.