Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
7,270 result(s) for "edible oils"
Sort by:
Assessment of quality of edible vegetable oils accessed in Gondar City, Northwest Ethiopia
Objective Edible vegetable oils are prone to quality deterioration through oxidation and microbial degradation resulting in nutritional loss and off-flavors. Quality deterioration may contribute in the formation of oxidation products that are reactive and toxic, which ultimately pose health risks including cancer and inflammation. The objective of this study was to assess quality of both imported and locally made edible vegetable oils accessed in Gondar City, Ethiopia. Cross-sectional study design was used to collect 60 samples randomly; 30 from locally made (Niger seed at market 14, Niger seed at production center 11, sunflower at the market 5) and 30 from imported palm oil brands (Avena 11, Hayat 4, Jersey 5 and Chef 10). Results The mean value for: moisture content (%) (0.333 ± 0.08 while 0.089 ± 0.11), specific-gravity (0.823 ± 0.14 and 0.807 ± 0.115), peroxide value (15.09 ± 1.61 and 7.05 ± 0.102 mill-equivalents of oxygen/kg), acid value (2.43 ± 0.9 and 0.98 ± 0.23 mg KOH/g oil) and iodine value (115.63 ± 6.77 and 21.8 ± 3.4 g I 2 /100 g oil) for local and imported edible oils, respectively. The results highlight that all rancidity quality parameters of the locally made oil samples were not within the joint WHO/FAO standards whilst the imported oils showed a greater fatty acid saturation.
Healthy oils : fact versus fiction
\"Used in moderation, many oils can be beneficial to one's diet and lifestyle. This book presents accurate information on more than two dozen oils, examining the health claims associated with popular oils along with the clinical research findings\"-- Provided by publisher.
Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes
Background Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box–Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. Results The substrate optimization for α-amylase production by the Box – Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae , as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. Conclusions The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect ( p <  0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.
Analysis of heavy metals and minerals in edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia
Introduction Nowadays, food safety is regarded as one of the most critical global public health issues. Edible oil, a key ingredient in food processing, is widely used and consumed in every Ethiopian household. However, its safety is often overlooked. Currently, edible oil is produced in Ethiopia from small-scale operations to large industrial levels, as well as imported from other countries. Objective This study aimed to determine the levels of heavy metals and essential minerals in edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. Methods A laboratory-based cross-sectional study was conducted from May to July 2021 in Gondar City. Seventeen edible oil samples were collected using simple random sampling techniques. Heavy metal content was determined using an atomic absorption spectrophotometer with the standard procedures and techniques after microwave digestion. The efficiency and validity of the method used were evaluated by determining the limit of detection (LOD), the limit of quantification (LOQ), accuracy, and precision. The collected data were entered into Microsoft Excel and transported to Stata for analysis. Result A total of seventeen vegetable oil samples were analyzed. The accuracy of the method was evaluated by recovery studies, which ranged from 81 to 115%, and the relative standard deviations were found to be below 15%. The concentrations of Zn, Cu, Fe, Cd, and Pb were in the range of 0.07 to 0.8 mg/l, 0.002 to 0.06 mg/l, 0.01 to 0.8 mg/l, 0.08 to 0.18 mg/l, and 0.003 to 0.27 mg/l, respectively. In general, the lead and cadmium content was higher than other metals in some of the investigated edible vegetable oils. Most values fell within the permissible quality limits for edibility as prescribed by the World Health Organization (WHO) and the National Agency for Food and Drug Administration and Control (NAFDAC). However, the levels of Pb and Cd exceeded the reference levels in some locally produced vegetable oils. Conclusion To address the exceeded levels of heavy metals, it is imperative to implement more careful handling, processing of raw materials, and filtering practices. Producers and marketers should take the necessary precautions to prevent contamination. Strict regulatory control from responsible bodies and stakeholders is recommended to ensure the safety and metal contents of vegetable oils originating from the study area.
Effervescence-assisted dual microextraction of PAHs in edible oils using lighter-than-water phosphonium-based ionic liquids and switchable hydrophilic/hydrophobic fatty acids
Herein, we developed a novel effervescence-assisted dual microextraction method, abbreviated as EM-LPSH, using lighter-than-water phosphonium-based ionic liquids (LPILs) and switchable hydrophilic/hydrophobic fatty acids (SHFAs). The EM-LPSH method was utilized for quick enrichment/extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oils. Owing to lower density than water, LPILs used as the first extractant were floated on the upper layer of the aqueous phase, leading to a convenient separation/collection compared with traditional heavier-than-water imidazolium-based ionic liquids. Interestingly, SHFAs play triple functions: a dispersive solvent in the microextraction process, an acidic source in effervescent reaction, and the second extractant in dual microextraction, due to switchability from hydrophilicity to hydrophobicity. Consequently, the integration of LPILs with SHFAs greatly enhanced the extraction efficiency for PAHs owing to the quick dual microextraction process. Some important variables were rigorously optimized using a one-factor-at-a-time approach. Under optimized conditions, the EM-LPSH/HPLC-FLD method provided a wide linear range (0.07~0.63–200 μg kg−1), satisfactory recovery (80.12–103.27%), and low limit of detection (0.02–0.19 μg kg−1), as well as high intra-day and inter-day precision (0.03–6.55) for six PAHs in edible oils. By using certified reference material in olive oil samples (GBW10162), the recoveries ranged from 97.40 to 98.39%, demonstrating high accuracy and precision. According to the detected levels of PAHs in six unheated and heated oils, their edible safety was evaluated in detail. In short, the newly developed method is simple, convenient, and highly efficient, thereby showing great prospects for application in conventional monitoring of trace-level PAHs in edible oils.
Towards edible oil self-sufficiency in Ethiopia: Lessons and prospects
Nine oilseeds namely noug, gomenzer, linseed, soybean, sunflower, castor, sesame, ground nut and cotton are important in Ethiopia for edible oil consumption. During the last 60 years, 156 varieties with their production practices were registered. Sesame contributes significantly to the foreign currency earnings next to coffee. Despite the revenue from export, 90% of the national demand of edible oil is imported. Among oilseeds, groundnut, sunflower and soybean are the choice of cultivation both in high rainfall Western lowlands and irrigated areas of Awash, Omo and Wabe Shebelle and Dawa Genale valleys. Similarly, sesame exports can be doubled or tripled using irrigated production. In addition, soybean can be cultivated as a source of raw material for food and feed industries. Oil palm occupies small areas compared to other oil seeds but contributes half for global consumption. In the short term, sufficient amount of edible oil to meet the national demand can come from maximizing sesame export and production of sunflower, groundnut and soybean as raw material for local industries. In the long term, oil palm production is indispensable to feed the ever-growing population. Therefore, the ultimate solution for edible oil self-sufficiency for most customers can only come from the high-yielding perennial oil palm with high yield and less production cost.
Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil
In this work, cobalt magnetic nanoporous carbon (Co-MNPC) is employed as an alternative to intensively used Fe3O4 cores for the preparation of magnetic molecularly imprinted polymers (Co-MNPC@MIPs) for the first time. Co-MNPC was prepared by one-step carbonization of Zeolitic Imidazolate Framework-67 (ZIF-67). Compared with the traditional Fe3O4 core, Co-MNPC showed a high specific surface area and large pore volumes. The prepared adsorbents, which could be rapidly collected from a matrix by external magnetic field, were applied for solid-phase extraction of phthalate plasticizers in edible oil. Several requisite extraction parameters were optimized to achieve desired extraction performance. Under the optimum extraction conditions, Co-MNPC@MIPs displayed better performance than commercialized columns. An analysis method based on Co-MNPC@MIPs coupled with gas chromatography (GC) was established. The linear range was 1–150 μg mL−1, and the detection limit range was 0.010–0.025 μg mL−1. The spiked recovery rate of the five phthalate plasticizers was 81.6–102.2%, with a relative standard deviation of 3.25–12.02%. Finally, the proposed method showed good feasibility for phthalate plasticizer extraction from edible oil.
Shelf-life stability of Asparagopsis bromoform in oil and freeze-dried powder
Abstract The idea of delivering bromoform from Asparagopsis using edible oil has gained momentum recently due to the improved processing time and that it is already a feed that many livestock producers use. The stability of bromoform in oil compared to freeze-dried product is still not well understood. To fill this gap, a systematic study was carried out to determine the effects of storage temperatures (40 °C, 25 °C, 4 °C and -20 °C), fluorescent light and exposure to open air, on the retention of bromoform in freeze-dried Asparagopsis (FD-Asp) and Asparagopsis oil (Asp-Oil) over 24-week period. In the absence of fluorescent light, Asp-Oil was a more effective way to preserve bromoform compared to FD-Asp due to either no change or higher Asp-Oil bromoform content (storage temperature dependent) after 24-week storage. Under the same conditions, FD-Asp bromoform content decreased by 74% at 40 °C, 53% at 25 °C, 6% at 4 °C, and no change of FD-Asp bromoform content at -20 °C. The presence of fluorescent light negatively affected Asp-Oil bromoform content at both 25 °C and 40 °C while the effect was insignificant on FD-Asp. The exposure of Asp-Oil to open air resulted in the decrease of bromoform content to below quantification limit (0.18 mg g−1) on week 8 for 40 °C sample and on week 16 for 25 °C sample. This study provides empirical evidence on the stabilising effect of oil in preserving bromoform extracted from Asparagopsis, confirming it is a more attractive medium to deliver bromoform compared to the freeze-dried powder form.
Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm 2 and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly. The measured results demonstrate that the proposed SRR sensor is superior in terms of sensitivity and quality factor compared to studies in the literature. The proposed sensor shows superior performance in sensitivity and quality factor (Q-factor) compared to existing sensors in the literature. It exhibits a remarkable sensitivity of 0.92 with a frequency shift of 760 MHz for adulteration detection, which is higher than sensors with shifts ranging from 140 to 600 MHz reported in previous studies. Additionally, the design has a high Q-factor of 149, indicating its efficiency in determining adulteration in edible oils. Additionally, the error rate in detecting adulteration is minimal at 3.1%, a significant improvement over prior sensors, which have error rates as high as 8%. These enhancements highlight the sensor’s potential in applications requiring precise, efficient, and cost-effective detection of edible oil adulteration, thus offering a significant advancement in both performance and practical utility over traditional methods.