Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,399 result(s) for "growth retardation"
Sort by:
Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss
Miscarriage is generally defined as the loss of a pregnancy before viability. An estimated 23 million miscarriages occur every year worldwide, translating to 44 pregnancy losses each minute. The pooled risk of miscarriage is 15·3% (95% CI 12·5–18·7%) of all recognised pregnancies. The population prevalence of women who have had one miscarriage is 10·8% (10·3–11·4%), two miscarriages is 1·9% (1·8–2·1%), and three or more miscarriages is 0·7% (0·5–0·8%). Risk factors for miscarriage include very young or older female age (younger than 20 years and older than 35 years), older male age (older than 40 years), very low or very high body-mass index, Black ethnicity, previous miscarriages, smoking, alcohol, stress, working night shifts, air pollution, and exposure to pesticides. The consequences of miscarriage are both physical, such as bleeding or infection, and psychological. Psychological consequences include increases in the risk of anxiety, depression, post-traumatic stress disorder, and suicide. Miscarriage, and especially recurrent miscarriage, is also a sentinel risk marker for obstetric complications, including preterm birth, fetal growth restriction, placental abruption, and stillbirth in future pregnancies, and a predictor of longer-term health problems, such as cardiovascular disease and venous thromboembolism. The costs of miscarriage affect individuals, health-care systems, and society. The short-term national economic cost of miscarriage is estimated to be £471 million per year in the UK. As recurrent miscarriage is a sentinel marker for various obstetric risks in future pregnancies, women should receive care in preconception and obstetric clinics specialising in patients at high risk. As psychological morbidity is common after pregnancy loss, effective screening instruments and treatment options for mental health consequences of miscarriage need to be available. We recommend that miscarriage data are gathered and reported to facilitate comparison of rates among countries, to accelerate research, and to improve patient care and policy development.
Δ9-tetrahydrocannabinol exposure during rat pregnancy leads to symmetrical fetal growth restriction and labyrinth-specific vascular defects in the placenta
1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9–tetrahydrocannabinol (Δ9-THC ), the major psychoactive ingredient in cannabis , causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection ( i.p .) of vehicle control or Δ9-THC (3 mg/kg) from embryonic ( E )6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day ( PND )21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 ( GLUT1 ) and glucocorticoid receptor ( GR ) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.
Fetal growth restriction: current knowledge
BackgroundFetal growth restriction (FGR) is a condition that affects 5–10% of pregnancies and is the second most common cause of perinatal mortality. This review presents the most recent knowledge on FGR and focuses on the etiology, classification, prediction, diagnosis, and management of the condition, as well as on its neurological complications.MethodsThe Pubmed, SCOPUS, and Embase databases were searched using the term “fetal growth restriction”.ResultsFetal growth restriction (FGR) may be classified as early or late depending on the time of diagnosis. Early FGR (<32 weeks) is associated with substantial alterations in placental implantation with elevated hypoxia, which requires cardiovascular adaptation. Perinatal morbidity and mortality rates are high. Late FGR (≥32 weeks) presents with slight deficiencies in placentation, which leads to mild hypoxia and requires little cardiovascular adaptation. Perinatal morbidity and mortality rates are lower. The diagnosis of FGR may be clinical; however, an arterial and venous Doppler ultrasound examination is essential for diagnosis and follow-up. There are currently no treatments to control FGR; the time at which pregnancy is interrupted is of vital importance for protecting both the mother and fetus.ConclusionEarly diagnosis of FGR is very important, because it enables the identification of the etiology of the condition and adequate monitoring of the fetal status, thereby minimizing risks of premature birth and intrauterine hypoxia.
BOARD-INVITED REVIEW: Intrauterine growth retardation: Implications for the animal sciences
Intrauterine growth retardation (IUGR), defined as impaired growth and development of the mammalian embryo/fetus or its organs during pregnancy, is a major concern in domestic animal production. Fetal growth restriction reduces neonatal survival, has a permanent stunting effect on postnatal growth and the efficiency of feed/forage utilization in offspring, negatively affects whole body composition and meat quality, and impairs long-term health and athletic performance. Knowledge of the underlying mechanisms has important implications for the prevention of IUGR and is crucial for enhancing the efficiency of livestock production and animal health. Fetal growth within the uterus is a complex biological event influenced by genetic, epigenetic, and environmental factors, as well as maternal maturity. These factors impact on the size and functional capacity of the placenta, uteroplacental blood flows, transfer of nutrients and oxygen from mother to fetus, conceptus nutrient availability, the endocrine milieu, and metabolic pathways. Alterations in fetal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology, metabolism, and postnatal growth of the offspring. Impaired placental syntheses of nitric oxide (a major vasodilator and angiogenic factor) and polyamines (key regulators of DNA and protein synthesis) may provide a unified explanation for the etiology of IUGR in response to maternal undernutrition and overnutrition. There is growing evidence that maternal nutritional status can alter the epigenetic state (stable alterations of gene expression through DNA methylation and histone modifications) of the fetal genome. This may provide a molecular mechanism for the role of maternal nutrition on fetal programming and genomic imprinting. Innovative interdisciplinary research in the areas of nutrition, reproductive physiology, and vascular biology will play an important role in designing the next generation of nutrient-balanced gestation diets and developing new tools for livestock management that will enhance the efficiency of animal production and improve animal well being.
The RNA landscape of the human placenta in health and disease
The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( https://www.obgyn.cam.ac.uk/placentome/ ). Placental dysfunction can have catastrophic or barely discernible effects ranging from miscarriage to apparently normal birth. Here the authors present a comprehensive analysis of the human placental transcriptome and identify circular RNAs and piRNAs.
Update on the Diagnosis and Classification of Fetal Growth Restriction and Proposal of a Stage-Based Management Protocol
Small fetuses are defined as those with an ultrasound estimated weight below a threshold, most commonly the 10th centile. The first clinically relevant step is the distinction of ‘true' fetal growth restriction (FGR), associated with signs of abnormal fetoplacental function and poorer perinatal outcome, from constitutional small-for-gestational age, with a near-normal perinatal outcome. Nowadays such a distinction should not be based solely on umbilical artery Doppler, since this index detects only early-onset severe forms. FGR should be diagnosed in the presence of any of the factors associated with a poorer perinatal outcome, including Doppler cerebroplacental ratio, uterine artery Doppler, a growth centile below the 3rd centile, and, possibly in the near future, maternal angiogenic factors. Once the diagnosis is established, differentiating into early- and late-onset FGR is useful mainly for research purposes, because it distinguishes two clear phenotypes with differences in severity, association with preeclampsia, and the natural history of fetal deterioration. As a second clinically relevant step, management of FGR and the decision to deliver aims at an optimal balance between minimizing fetal injury or death versus the risks of iatrogenic preterm delivery. We propose a protocol that integrates current evidence to classify stages of fetal deterioration and establishes follow-up intervals and optimal delivery timings, which may facilitate decisions and reduce practice variability in this complex clinical condition.
Machine learning-enhanced prediction of fetal growth restriction using fetal cardiac remodeling parameters
Background Fetal growth restriction (FGR) contributes to over 30% of late-pregnancy stillbirth, yet its diagnosis is challenging because current methods rely on indirect surrogate markers (estimated fetal weight and umbilical artery) that often fail to detect fetal compromise, particularly in late-onset cases. We hypothesized that fetal cardiac remodeling could provide a more robust basis for prediction. This study aimed to develop and validate the cardiac remodeling for FGR prediction model (CR-FGR), a first-in-class machine learning approach designed to operationalize the concept of fetal cardiac remodeling as a direct marker for FGR prediction. Methods This multicenter study of singleton pregnancies included retrospective development ( n  = 663) and prospective validation in two independent cohorts (internal, n  = 224; external, n  = 51). The primary outcome was FGR (birth weight < 10th percentile). From 938 echocardiography videos, 222 cardiac parameters were extracted. A machine learning process selected the five most predictive parameters for the final logistic regression model (CR-FGR): right ventricular stroke volume/kg (RVSV/kg), cardiac output/kg (RVCO/kg), cardiac output (RVCO), left ventricular cardiac output (LVCO), and end-systolic area (RVESA). Results The CR-FGR model showed robust performance, with an area under the curve (AUC) of 0.872 (95% confidence interval (CI), 0.780–0.935) in the prospective internal testing set and 0.831 (95% CI, 0.674–0.947) in the external testing set. Its performance was comparable to a conventional EFW and Doppler model. Critically, the CR-FGR excelled in identifying challenging subgroups: it was highly effective for late-onset FGR (AUC 0.876, 95% CI, 0.748–0.951) and successfully detected FGR in many cases with normal umbilical artery Doppler, demonstrating its ability to capture pathology missed by traditional assessment. Conclusions We developed and validated the first machine learning model for FGR prediction based on fetal cardiac remodeling. This model establishes a new diagnostic strategy, offering a powerful, complementary tool that captures direct evidence of fetal compromise. It significantly enhances risk stratification, particularly for the clinically challenging late-onset and Doppler-normal phenotypes of FGR. Trial registration The Chinese Clinical Trial Registry, TRN: ChiCTR2000034182, Registration date: 27 June 2020.
A maternal serum metabolite ratio predicts fetal growth restriction at term
Fetal growth restriction (FGR) is the major single cause of stillbirth 1 and is also associated with neonatal morbidity and mortality 2 , 3 , impaired health and educational achievement in childhood 4 , 5 and with a range of diseases in later life 6 . Effective screening and intervention for FGR is an unmet clinical need. Here, we performed ultrahigh performance liquid chromatography–tandem mass spectroscopy (UPLC–MS/MS) metabolomics on maternal serum at 12, 20 and 28 weeks of gestational age (wkGA) using 175 cases of term FGR and 299 controls from the Pregnancy Outcome Prediction (POP) study, conducted in Cambridge, UK, to identify predictive metabolites. Internal validation using 36 wkGA samples demonstrated that a ratio of the products of the relative concentrations of two positively associated metabolites (1-(1-enyl-stearoyl)-2-oleoyl-GPC (P-18:0/18:1) and 1,5-anhydroglucitol) to the product of the relative concentrations of two negatively associated metabolites (5α-androstan-3α,17α-diol disulfate and N 1, N 12-diacetylspermine) predicted FGR at term. The ratio had approximately double the discrimination as compared to a previously developed angiogenic biomarker 7 , the soluble fms-like tyrosine kinase 1:placental growth factor (sFLT1:PlGF) ratio (AUC 0.78 versus 0.64, P = 0.0001). We validated the predictive performance of the metabolite ratio in two sub-samples of a demographically dissimilar cohort, Born in Bradford (BiB), conducted in Bradford, UK ( P = 0.0002). Screening and intervention using this metabolite ratio in conjunction with ultrasonic imaging at around 36 wkGA could plausibly prevent adverse events through enhanced fetal monitoring and targeted induction of labor. The relative concentrations of four metabolites in maternal blood at 36 weeks of gestation predict fetal growth restriction in infants subsequently born at term, enabling enhanced fetal monitoring in pregnancies at risk.
Treatment for Mild Chronic Hypertension during Pregnancy
Pregnant women with mild chronic hypertension were randomly assigned to receive medication targeting a normal blood pressure (<140/90 mm Hg) or to receive no treatment unless severe hypertension (>160/105 mm Hg) developed. The incidence of adverse maternal and neonatal outcomes was significantly lower in the active-treatment group, without an increase in low birth weight.
Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation
Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets.