Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
270 result(s) for "leaf economic spectrum"
Sort by:
Dimensions of invasiveness
Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species’ distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders—abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species’ introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions—for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.
Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities
1. Land-use intensification drives changes in microbial communities and the soil functions they regulate, but the mechanisms underlying these changes are poorly understood as land use can affect soil communities both directly (e.g. via changes in soil fertility) and indirectly (e.g. via changes in plant inputs). 2. The speed of microbial responses is also poorly understood. For instance, whether it is long-term legacies or short-term changes in land-use intensity that drive changes in microbial communities. 3. To address these topics, we measured multiple microbial functions, bacterial and fungal biomass and abiotic soil properties at two time intervals 3 years apart. This was performed in 150 grassland sites differing greatly in management intensity across three German regions. 4. Observed changes in microbial soil properties were related to both long-term means and short-term changes in: abiotic soil properties, land-use intensity, community abundance-weighted means of plant functional traits and plant biomass properties in regression and structural equation models. Plant traits, particularly leaf phosphorus, and soil pH were the best predictors of change in soil microbial function, as well as fungal and bacterial biomass, while land-use intensity showed weaker effects. 5. Indirect legacy effects, in which microbial change was explained by the effects of long-term land-use intensity on plant traits, were important, thus indicating a time lag between plant community and microbial change. Whenever the effects of short-term changes in land-use intensity were present, they acted directly on soil microorganisms. 6. Synthesis. The results provide new evidence that soil communities and their functioning respond to short-term changes in land-use intensity, but that both rapid and longer time-scale responses to changes in plant functional traits are at least of equal importance. This suggests that management which shapes plant communities may be an effective means of managing soil communities and the functions and services they provide.
Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum
1. Root, stem and leaf traits are thought to be functionally coordinated to maximize the efficiency of acquiring and using limited resources. However, evidence is mixed for consistent whole-plant trait coordination among woody plants, and we lack a clear understanding of the adaptive value of root traits along soil resource gradients. If fine roots are the below-ground analogue to leaves, then low specific root length (SRL) and high tissue density should be common on infertile soil. Here, we test the prediction that root, stem and leaf traits and relative growth rate respond in unison with soil fertility gradients. 2. We measured fine root, stem and leaf traits and relative growth rate on individual seedlings of 66 tree species grown in controlled conditions. Our objectives were (i) to determine whether multiple root traits align with growth rate, leaf and stem traits and with each other and (ii) to quantify the relationships between community-weighted mean root traits and two strong soil fertility gradients that differed in spatial extent and community composition. 3. At the species level, fast growth rates were associated with low root and stem tissue density and high specific leaf area. SRL and root diameter were not clearly related to growth rate and loaded on a separate principal component from the plant economic spectmm. 4. At the community level, growth rate was positively related to soil fertility, and root tissue density (RTD) and branching were negatively related to soil fertility. SRL was negatively related and root diameter was positively related to soil fertility on the large-scale gradient that included ectomycorrhizal angiosperms. 5. Synthesis. Root, stem and leaf tissue traits of tree seedlings are coordinated and influence fitness along soil fertility gradients. RTD responds in unison with above-ground traits to soil fertility gradients; however, root traits are multidimensional because SRL is orthogonal to the plant economic spectrum. In contrast to leaves, trees are not constrained in the way they construct fine roots: plants can construct high or low SRL roots of any tissue density. High RTD is the most consistent below-ground trait that reflects adaptation to infertile soil.
Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity
• Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. • We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. • Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (g min) decreased. With trait variability, SurEau predicts the plasticity of LAI and g min buffers the impact of increasing aridity on population persistence. • Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network
1. Plant phenotypic diversity is shaped by the interplay of trade-offs and constraints in evolution. Closely integrated groups of traits (i.e. trait dimensions) are used to classify plant phenotypic diversity into plant strategies, but we do not know the degree of interdependence among trait dimensions. To assess how selection has shaped the phenotypic space, we examine whether trait dimensions are independent. 2. We gathered data on saplings of 24 locally coexisting tree species in a temperate forest, and examined the correlation structure of 20 leaf, branch, stem and root traits. These traits fall into three well-established trait dimensions (the leaf economic spectrum, the wood spectrum and Corner's Rules) that characterize vital plant functions: resource acquisition, sap transport, mechanical support and canopy architecture. Using ordinations, network analyses and Mantel tests, we tested whether the sapling phenotype of these tree species is organized along independent trait dimensions. 3. Across species, the sapling phenotype is not structured into clear trait dimensions. The trait relationships defining trait dimensions are either weak or absent and do not dominate the correlation structure of the sapling phenotype as a whole. Instead traits from the three commonly recognized trait dimensions are organized into an integrated trait network. The effect of phylogeny on trait correlations is minimal. 4. Our results indicate that trait dimensions apparent in broad-based interspecific surveys do not hold up among locally coexisting species. Furthermore, architectural traits appear central to the phenotypic network, suggesting a pivotal role for branching architecture in linking resource acquisition, mechanical support and hydraulic functions. 5. Synthesis. Our study indicates that local and global patterns of phenotypic integration differ and calls into question the use of trait dimensions at local scales. We propose that a network approach to assessing plant function more effectively reflects the multiple trade-offs and constraints shaping the phenotype in locally co-occurring species.
Plant traits related to precipitation sensitivity of species and communities in semiarid shortgrass prairie
• Understanding how plant communities respond to temporal patterns of precipitation in water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem properties, including forage production, biogeochemical cycling, and biodiversity. • In North American shortgrass prairie, we measured plant abundance, functional traits related to growth rate and drought tolerance, and aboveground net primary productivity to identify: species-level responsiveness to precipitation (precipitation sensitivity S spp) across functional groups; S spp relationships to continuous plant traits; and whether continuous trait–S spp relationships scaled to the community level. • Across 32 plant species, we found strong bivariate relationships of both leaf dry matter content (LDMC) and leaf osmotic potential Ψosm with S spp. Yet, LDMC and specific leaf area were retained in the lowest Akaike information criterion multiple regression model, explaining 59% of S spp. Most relationships between continuous traits and S spp scaled to the community level but were often contingent on the presence/absence of particular species and/or land management at a site. • Thus, plant communities in shortgrass prairie may shift towards slower growing, more stress-resistant species in drought years and/or chronically drier climate. These findings highlight the importance of both leaf economic and drought tolerance traits in determining species and community responses to altered precipitation.
Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient
• Trait variability in space and time allows plants to adjust to changing environmental conditions. However, we know little about how this variability is distributed and coordinated at different organizational levels. • For six dominant tree species in northeastern Spain (three Fagaceae and three Pinaceae) we quantified the inter- and intraspecific variability of a set of traits along a water availability gradient. We measured leaf mass per area (LMA), leaf nitrogen (N) concentration, carbon isotope composition in leaves (δ13C), stem wood density, the Huber value (Hv, the ratio of cross-sectional sapwood area to leaf area), sapwood-specific and leaf-specific stem hydraulic conductivity, vulnerability to xylem embolism (P 50) and the turgor loss point (P tlp). • Differences between families explained the largest amount of variability for most traits, although intraspecific variability was also relevant. Species occupying wetter sites showed higher N, P 50 and P tlp, and lower LMA, δ13C and Hv. However, when trait relationships with water availability were assessed within species they held only for Hv and P tlp. • Overall, our results indicate that intraspecific adjustments along the water availability gradient relied primarily on changes in resource allocation between sapwood and leaf area and in leaf water relations.
Leaf economics and plant hydraulics drive leaf
• Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value Hv (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, and prevents developing trait-based prediction models. • Based on theoretical arguments, we hypothesise that global patterns in Hv of terminal woody branches can be predicted from variables related to plant trait spectra, that is plant hydraulics and size and leaf economics. • Using a global compilation of 1135 species-averaged Hv , we show that Hv varies over three orders of magnitude. Higher Hv are seen in short small-leaved low-specific leaf area (SLA) shrubs with low Ks in arid relative to tall large-leaved high-SLA trees with high Ks in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than Hv . Negative isometry is found between Hv and Ks , suggesting a compensation to maintain hydraulic supply to leaves across species. • This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of above-ground biomass allocation and helps predict vegetation responses to drought.