Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
172 result(s) for "one-class support vector machine"
Sort by:
Unknown Object Detection Using a One-Class Support Vector Machine for a Cloud–Robot System
Inter-robot communication and high computational power are challenging issues for deploying indoor mobile robot applications with sensor data processing. Thus, this paper presents an efficient cloud-based multirobot framework with inter-robot communication and high computational power to deploy autonomous mobile robots for indoor applications. Deployment of usable indoor service robots requires uninterrupted movement and enhanced robot vision with a robust classification of objects and obstacles using vision sensor data in the indoor environment. However, state-of-the-art methods face degraded indoor object and obstacle recognition for multiobject vision frames and unknown objects in complex and dynamic environments. From these points of view, this paper proposes a new object segmentation model to separate objects from a multiobject robotic view-frame. In addition, we present a support vector data description (SVDD)-based one-class support vector machine for detecting unknown objects in an outlier detection fashion for the classification model. A cloud-based convolutional neural network (CNN) model with a SoftMax classifier is used for training and identification of objects in the environment, and an incremental learning method is introduced for adding unknown objects to the robot knowledge. A cloud–robot architecture is implemented using a Node-RED environment to validate the proposed model. A benchmarked object image dataset from an open resource repository and images captured from the lab environment were used to train the models. The proposed model showed good object detection and identification results. The performance of the model was compared with three state-of-the-art models and was found to outperform them. Moreover, the usability of the proposed system was enhanced by the unknown object detection, incremental learning, and cloud-based framework.
Analyzing Personality Traits and External Factors for Stem Education Awareness using Machine Learning
The purpose of the paper is to present the personality traits and the factors that influence a student to pursue STEM education using machine learning techniques. STEM courses have high regard because they play a vital role in global technology, inventions and the economy. Educational Data Mining helps us to identify patterns and relationships in a large educational database. On the other hand, Machine Learning facilitates decision making process by enabling learning from the dataset. A survey comprising of an extensive variety of questions regarding STEM education was conducted and the opinions of students from various backgrounds and disciplines were collected. A dataset was generated based on the responses from students. Machine Learning algorithms (one class-SVM and KNN) applied on this dataset emphasizes variety of courses offered, research-oriented learning, problem-solving approach, a good career with high paying job are some of the factors which may influence a student to choose STEM course.
Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection
Machine Learning (ML) and Deep Learning (DL) have been used for building Intrusion Detection Systems (IDS). The increase in both the number and sheer variety of new cyber-attacks poses a tremendous challenge for IDS solutions that rely on a database of historical attack signatures. Therefore, the industrial pull for robust IDSs that are capable of flagging zero-day attacks is growing. Current outlier-based zero-day detection research suffers from high false-negative rates, thus limiting their practical use and performance. This paper proposes an autoencoder implementation for detecting zero-day attacks. The aim is to build an IDS model with high recall while keeping the miss rate (false-negatives) to an acceptable minimum. Two well-known IDS datasets are used for evaluation—CICIDS2017 and NSL-KDD. In order to demonstrate the efficacy of our model, we compare its results against a One-Class Support Vector Machine (SVM). The manuscript highlights the performance of a One-Class SVM when zero-day attacks are distinctive from normal behaviour. The proposed model benefits greatly from autoencoders encoding-decoding capabilities. The results show that autoencoders are well-suited at detecting complex zero-day attacks. The results demonstrate a zero-day detection accuracy of 89–99% for the NSL-KDD dataset and 75–98% for the CICIDS2017 dataset. Finally, the paper outlines the observed trade-off between recall and fallout.
Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection
Recently, the number of Internet of Things (IoT) botnet attacks has increased tremendously due to the expansion of online IoT devices which can be easily compromised. Botnets are a common threat that takes advantage of the lack of basic security tools in IoT devices and can perform a series of Distributed Denial of Service (DDoS) attacks. Developing new methods to detect compromised IoT devices is urgent in order to mitigate the negative consequences of these IoT botnets since the existing IoT botnet detection methods still present some issues, such as, relying on labelled data, not being validated with newer botnets, and using very complex machine learning algorithms. Anomaly detection methods are promising for detecting IoT botnet attacks since the amount of available normal data is very large. One of the powerful algorithms that can be used for anomaly detection is One Class Support vector machine (OCSVM). The efficiency of the OCSVM algorithm depends on several factors that greatly affect the classification results such as the subset of features that are used for training OCSVM model, the kernel type, and its hyperparameters. In this paper, a new unsupervised evolutionary IoT botnet detection method is proposed. The main contribution of the proposed method is to detect IoT botnet attacks launched form compromised IoT devices by exploiting the efficiency of a recent swarm intelligence algorithm called Grey Wolf Optimization algorithm (GWO) to optimize the hyperparameters of the OCSVM and at the same time to find the features that best describe the IoT botnet problem. To prove the efficiency of the proposed method, its performance is evaluated using typical anomaly detection evaluation measures over a new version of a real benchmark dataset. The experimental results show that the proposed method outperforms all other algorithms in terms of true positive rate, false positive rate, and G-mean for all IoT device types. Also, it achieves the lowest detection time, while significantly reducing the number of selected features.
One-class classification model for intelligent fault diagnosis of mine ventilation systems
To address the problem of fault branch recognition in mine ventilation systems, a one-class classification algorithm is introduced to construct the MC-OCSVM ventilation system fault diagnosis model, which is integrated with multiple OCSVMs. This model adopts uniform hyperparameters and transforms the ventilation system fault diagnosis problem into a maximum decision distance problem, to realize the effective use of mine monitoring wind speed data. The experiments on public KEEL datasets verify that the one-class classification integration model can solve the multiclassification problem and that the MC-OCSVM model has better generalizability than other one-class classification integration models do. The experiment is carried out in the Buertai coal mine, and the results show that the proposed algorithm can identify fault branches quickly and accurately, with an accuracy of 93.2% and a single fault diagnosis time is 1.2 s, highlighting its strong robustness.
UAV Sensor Fault Detection Using a Classifier without Negative Samples: A Local Density Regulated Optimization Algorithm
Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight security, in which the flight control system conducts real-time control for the vehicles relying on the sensing information from sensors, and erroneous sensor data will lead to false flight control commands, causing undesirable consequences. However, because of the scarcity of faulty instances, it still remains a challenging issue for flight sensor fault detection. The one-class support vector machine approach is a favorable classifier without negative samples, however, it is sensitive to outliers that deviate from the center and lacks a mechanism for coping with them. The compactness of its decision boundary is influenced, leading to the degradation of detection rate. To deal with this issue, an optimized one-class support vector machine approach regulated by local density is proposed in this paper, which regulates the tolerance extents of its decision boundary to the outliers according to their extent of abnormality indicated by their local densities. The application scope of the local density theory is narrowed to keep the internal instances unchanged and a rule for assigning the outliers continuous density coefficients is raised. Simulation results on a real flight control system model have proved its effectiveness and superiority.
Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System
This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles.
Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data
Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O & M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE.
Hybrid Approach to Document Anomaly Detection: An Application to Facilitate RPA in Title Insurance
Anomaly detection (AD) is an important aspect of various domains and title insurance (TI) is no exception. Robotic process automation (RPA) is taking over manual tasks in TI business processes, but it has its limitations without the support of artificial intelligence (AI) and machine learning (ML). With increasing data dimensionality and in composite population scenarios, the complexity of detecting anomalies increases and AD in automated document management systems (ADMS) is the least explored domain. Deep learning, being the fastest maturing technology can be combined along with traditional anomaly detectors to facilitate and improve the RPAs in TI. We present a hybrid model for AD, using autoencoders (AE) and a one-class support vector machine (OSVM). In the present study, OSVM receives input features representing real-time documents from the TI business, orchestrated and with dimensions reduced by AE. The results obtained from multiple experiments are comparable with traditional methods and within a business acceptable range, regarding accuracy and performance.
Semi-Supervised Anomaly Detection of Dissolved Oxygen Sensor in Wastewater Treatment Plants
As the world progresses toward a digitally connected and sustainable future, the integration of semi-supervised anomaly detection in wastewater treatment processes (WWTPs) promises to become an essential tool in preserving water resources and assuring the continuous effectiveness of plants. When these complex and dynamic systems are coupled with limited historical anomaly data or complex anomalies, it is crucial to have powerful tools capable of detecting subtle deviations from normal behavior to enable the early detection of equipment malfunctions. To address this challenge, in this study, we analyzed five semi-supervised machine learning techniques (SSLs) such as Isolation Forest (IF), Local Outlier Factor (LOF), One-Class Support Vector Machine (OCSVM), Multilayer Perceptron Autoencoder (MLP-AE), and Convolutional Autoencoder (Conv-AE) for detecting different anomalies (complete, concurrent, and complex) of the Dissolved Oxygen (DO) sensor and aeration valve in the WWTP. The best results are obtained in the case of Conv-AE algorithm, with an accuracy of 98.36 for complete faults, 97.81% for concurrent faults, and 98.64% for complex faults (a combination of incipient and concurrent faults). Additionally, we developed an anomaly detection system for the most effective semi-supervised technique, which can provide the detection of delay time and generate a fault alarm for each considered anomaly.