Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,261 result(s) for "primary root"
Sort by:
Effect of Nitrate on Nodule and Root Growth of Soybean (Glycine max (L.) Merr.)
The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.
Nitric oxide plays a central role in determining lateral root development in tomato
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.
Responses of root architecture development to low phosphorus availability: a review
BackgroundPhosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources.ScopeThis review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots.ConclusionsThe role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
It's time to make changes: modulation of root system architecture by nutrient signals
Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.
Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress
Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (−0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H+-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H+-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress.
Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development
Plant development under altered nutritional status and environmental conditions and during attack from invaders is highly regulated by plant hormones at the molecular level by various signaling pathways. Previously, reactive oxygen species (ROS) were believed to be harmful as they cause oxidative damage to cells; however, in the last decade, the essential role of ROS as signaling molecules regulating plant growth has been revealed. Plant roots accumulate relatively high levels of ROS, and thus, maintaining ROS homeostasis, which has been shown to regulate the balance between cell proliferation and differentiation at the root tip, is important for proper root growth. However, when the balance is disturbed, plants are unable to respond to the changes in the surrounding conditions and cannot grow and survive. Moreover, ROS control cell expansion and cell differentiation processes such as root hair formation and lateral root development. In these processes, the transcription factor-mediated gene expression network is important downstream of ROS. Although ROS can independently regulate root growth to some extent, a complex crosstalk occurs between ROS and other signaling molecules. Hormone signals are known to regulate root growth, and ROS are thought to merge with these signals. In fact, the crosstalk between ROS and these hormones has been elucidated, and the central transcription factors that act as a hub between these signals have been identified. In addition, ROS are known to act as important signaling factors in plant immune responses; however, how they also regulate plant growth is not clear. Recent studies have strongly indicated that ROS link these two events. In this review, we describe and discuss the role of ROS signaling in root development, with a particular focus on transcriptional regulation. We also summarize the crosstalk with other signals and discuss the importance of ROS as signaling molecules for plant root development.
Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa)
MicroRNA (miRNA)-mediated regulation of auxin signaling components plays a critical role in plant development. miRNA expression and functional diversity contribute to the complexity of regulatory networks of miRNA/target modules. This study functionally characterizes two members of the rice (Oryza sativa) miR393 family and their target genes, OsTIR1 and OsAFB2 (AUXIN SIGNALING F-BOX), the two closest homologs of Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 (TIR1). We found that the miR393 family members possess distinctive expression patterns, with miR393a expressed mainly in the crown and lateral root primordia, as well as the coleoptile tip, and miR393b expressed in the shoot apical meristem. Transgenic plants overexpressing miR393a/b displayed a severe phenotype with hallmarks of altered auxin signaling, mainly including enlarged flag leaf inclination and altered primary and crown root growth. Furthermore, OsAFB2- and OsTIR1-suppressed lines exhibited increased inclination of flag leaves at the booting stage, resembling miR393-overexpressing plants. Moreover, yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsTIR1 and OsAFB2 interact with OsIAA1. Expression diversification of miRNA393 implies the potential role of miRNA regulation during species evolution. The conserved mechanisms of the miR393/target module indicate the fundamental importance of the miR393-mediated regulation of auxin signal transduction in rice.
Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.
Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis
The root tip zone is regarded as the principal action site for iron (Fe) toxicity and is more sensitive than other root zones, but the mechanism underpinning this remains largely unknown. We explored the mechanism underpinning the higher sensitivity at the Arabidopsis root tip and elucidated the role of nitric oxide (NO) using NO-related mutants and pharmacological methods. Higher Fe sensitivity of the root tip is associated with reduced potassium (K+) retention. NO in root tips is increased significantly above levels elsewhere in the root and is involved in the arrest of primary root tip zone growth under excess Fe, at least in part related to NO-induced K+ loss via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4) and reduced root tip zone cell viability. Moreover, ethylene can antagonize excess Fe-inhibited root growth and K+ efflux, in part by the control of root tip NO levels. We conclude that excess Fe attenuates root growth by effecting an increase in root tip zone NO, and that this attenuation is related to NO-mediated alterations in K+ homeostasis, partly via SNO1/SOS4.
Inconsistencies in the root biology terminology: Let’s communicate better
PurposeRoot biology is an actively developing field that includes ecological, morphological, anatomical, developmental, and evolutionary aspects. I focus this opinion paper entirely on the inconsistencies in the usage of various terms in root biology. When terminology is used inconsistently, this may create a confusion in understanding, and the goal of this article is to identify the most common errors and suggest how to avoid them.Identified inconsistencies and proposed suggestionsThe proposed suggestions are as follows: (1) When definitions are not established or ambiguous, it is recommended to describe what is meant (“basal root” term is discussed); (2) Avoid using ambiguous terms (it is recommended not to use the term “secondary root”); (3) When known, give preference to organogenesis-related terminology (the terms “primary root”, “tap root”, and “main root” are compared); (4) Avoid using terms established for one identity to describe a different identity (inappropriate term selection is discussed, and it is recommended not to use the term “basal meristem” in the context of the root apex longitudinal zonation).Towards better communication Overall, I discuss how to avoid inconsistencies in terminology and achieve better communication among root biologists.