Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
208 result(s) for "type II alveolar epithelial cells"
Sort by:
MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis
Successful repair and renewal of alveolar epithelial cells (AECs) are critical in prohibiting the accumulation of myofibroblasts in pulmonary fibrogenesis. MicroRNAs (miRNAs) are multifocal regulators involved in lung injury and repair. However, the contribution of miRNAs to AEC2 renewal and apoptosis is incompletely understood. We report that miRNA-29c (miR-29c) expression is lower in AEC2s of individuals with idiopathic pulmonary fibrosis than in healthy lungs. Epithelial cells overexpressing miR-29c show higher proliferative rates and viability. miR-29c protects epithelial cells from apoptosis by targeting forkhead box O3a (Foxo3a). Both overexpression of miR-29c conventionally and AEC2s specifically lead to less fibrosis and better recovery in vivo. Furthermore, deficiency of miR-29c in AEC2s results in higher apoptosis and reduced epithelial renewal. Interestingly, a gene network including a subset of apoptotic genes was coregulated by both Toll-like receptor 4 and miR-29c. Taken together, miR-29c maintains epithelial integrity and promotes recovery from lung injury, thereby attenuating lung fibrosis in mice.
Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model
Studies have suggested that histone modification has a positive impact on various aspects associated with the progression of COPD. Histone deacetylase 2 (HDAC2) suppresses proinflammatory gene expression through deacetylation of core histones. To investigate the effect of histone modification on the expression of chemokines in type II alveolar epithelial cells (AEC II) in a rat COPD model and regulation of HDAC2 expression by curcumin in comparison with corticosteroid. The rat COPD model was established by cigarette smoke exposure and confirmed by histology and pathophysioloy. AEC II were isolated and cultured in vitro from the COPD models and control animals. The cells were treated with curcumin, corticosteroid, or trichostatin A, and messenger RNA (mRNA) expression of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2α (MIP-2α) was assessed by quantitative real-time polymerase chain reaction (RT-PCR). The expression of HDAC2 was measured by Western blot. Chromatin immunoprecipitation was used to detect H3/H4 acetylation and H3K9 methylation in the promoter region of three kinds of chemokine genes (IL-8, MCP-1, and MIP-2α). Compared to the control group, the mRNAs of MCP-1, IL-8, and MIP-2α were upregulated 4.48-fold, 3.14-fold, and 2.83-fold, respectively, in the AEC II from COPD model. The protein expression of HDAC2 in the AEC II from COPD model was significantly lower than from the control group ( <0.05). The decreased expression of HDAC2 was negatively correlated with the increased expression of IL-8, MCP-1, and MIP-2α mRNAs (all <0.05). The level of H3/H4 acetylation was higher but H3K9 methylation in the promoter region of chemokine genes was lower in the cells from COPD model than from the control group (all <0.05). Curcumin downregulated the expression of MCP-1, IL-8, and MIP-2α, and the expression was further enhanced in the presence of corticosteroid. Moreover, curcumin restored HDAC2 expression, decreased the levels of H3/H4 acetylation, and increased H3K9 methylation in the promoter region of chemokine in the presence or absence of dexamethasone (all <0.05). Curcumin may suppress chemokines and restore corticosteroid resistance in COPD through modulating HDAC2 expression and its effect on histone modification.
The JAK2 pathway is activated in idiopathic pulmonary fibrosis
Background Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal fibrotic disorder, with no curative therapies. The signal transducer and activator of transcription 3 (STAT3) protein is activated in lung fibroblasts and alveolar type II cells (ATII), thereby contributing to lung fibrosis in IPF. Although activation of Janus kinase 2 (JAK2) has been implicated in proliferative disorders, its role in IPF is unknown. The aim of this study was to analyze JAK2 activation in IPF, and to determine whether JAK2/STAT3 inhibition is a potential therapeutic strategy for this disease. Methods and results JAK2/p-JAK2 and STAT3/pSTAT3 expression was evaluated using quantitative real time-PCR, western blotting, and immunohistochemistry. Compared to human healthy lung tissue ( n  = 10) both proteins were upregulated in the lung tissue of IPF patients ( n  = 12). Stimulating primary ATII and lung fibroblasts with transforming growth factor beta 1 or interleukin (IL)-6/IL-13 activated JAK2 and STAT3, inducing epithelial to mesenchymal and fibroblast to myofibroblast transitions. Dual p-JAK2/p-STAT3 inhibition with JSI-124 or silencing of JAK2 and STAT3 genes suppressed ATII and the fibroblast to myofibroblast transition, with greater effects than the sum of those obtained using JAK2 or STAT3 inhibitors individually. Dual rather than single inhibition was also more effective for inhibiting fibroblast migration, preventing increases in fibroblast senescence and Bcl-2 expression, and ameliorating impaired autophagy. In rats administered JSI-124, a dual inhibitor of p-JAK2/p-STAT3, at a dose of 1 mg/kg/day, bleomycin-induced lung fibrosis was reduced and collagen deposition in the lung was inhibited, as were JAK2 and STAT3 activation and several markers of fibrosis, autophagy, senescence, and anti-apoptosis. Conclusions JAK2 and STAT3 are activated in IPF, and their dual inhibition may be an attractive strategy for treating this disease.
LRRK2 plays essential roles in maintaining lung homeostasis and preventing the development of pulmonary fibrosis
Perturbation of lung homeostasis is frequently associated with progressive and fatal respiratory diseases, such as pulmonary fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in healthy lungs, but its functions in lung homeostasis and diseases remain elusive. Herein, we showed that LRRK2 expression was clearly reduced in mammalian fibrotic lungs, and LRRK2-deficient mice exhibited aggravated bleomycin-induced pulmonary fibrosis. Furthermore, we demonstrated that in bleomycin-treated mice, LRRK2 expression was dramatically decreased in alveolar type II epithelial (AT2) cells, and its deficiency resulted in profound dysfunction of AT2 cells, characterized by impaired autophagy and accelerated cellular senescence. Additionally, LRRK2-deficient AT2 cells showed a higher capacity of recruiting profibrotic macrophages via the CCL2/CCR2 signaling, leading to extensive macrophage-associated profibrotic responses and progressive pulmonary fibrosis. Taken together, our study demonstrates that LRRK2 plays a crucial role in preventing AT2 cell dysfunction and orchestrating the innate immune responses to protect against pulmonary fibrosis.
The micromechanics of lung alveoli: structure and function of surfactant and tissue components
The mammalian lung´s structural design is optimized to serve its main function: gas exchange. It takes place in the alveolar region (parenchyma) where air and blood are brought in close proximity over a large surface. Air reaches the alveolar lumen via a conducting airway tree. Blood flows in a capillary network embedded in inter-alveolar septa. The barrier between air and blood consists of a continuous alveolar epithelium (a mosaic of type I and type II alveolar epithelial cells), a continuous capillary endothelium and the connective tissue layer in-between. By virtue of its respiratory movements, the lung has to withstand mechanical challenges throughout life. Alveoli must be protected from over-distension as well as from collapse by inherent stabilizing factors. The mechanical stability of the parenchyma is ensured by two components: a connective tissue fiber network and the surfactant system. The connective tissue fibers form a continuous tensegrity (tension + integrity) backbone consisting of axial, peripheral and septal fibers. Surfactant (surface active agent) is the secretory product of type II alveolar epithelial cells and covers the alveolar epithelium as a biophysically active thin and continuous film. Here, we briefly review the structural components relevant for gas exchange. Then we describe our current understanding of how these components function under normal conditions and how lung injury results in dysfunction of alveolar micromechanics finally leading to lung fibrosis.
Senescence in Alveolar Epithelial Type II Cells Promotes Acute Lung Injury and Impairs Regeneration
The mortality associated with acute lung injury (ALI) increases with age. Alveolar epithelial type II (AEII) cells are the progenitor cells of the alveolar epithelium and are crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII cell senescence impairs regeneration and promotes the development of ALI. To discriminate between the impact of old age and AEII cell senescence in ALI, young (3 mo) and old (18 mo) Sftpc-Ai9 mice with surfactant protein c mediated tdTomato expression, and young Sftpc-Ai9-Trf1 mice with additional telomeric repeat-binding factor 1 (Trf1) knockout-mediated senescence in AEII cells were treated with 1 μg LPS per gram body weight (  = 9-11). Control mice received saline solution (  = 7). Mice were killed 4 or 7 days later. Lung mechanics, pulmonary inflammation, and proteomes were analyzed, and parenchymal injury, AEII cell proliferation and AEI cell differentiation rate were quantified using stereology. Old mice showed 55% mortality by Day 4, whereas all young mice survived. Pulmonary inflammation was most severe in old Sftpc-Ai9 mice, followed by Sftpc-Ai9-Trf1 mice. Young Sftpc-Ai9 mice recovered almost completely by Day 7, whereas Sftpc-Ai9-Trf1 mice still showed mild signs of injury. An expansion of AEII cells was measured only in young Sftpc-Ai9 mice at Day 7. Aging and telomere dysfunction-mediated senescence had no impact on AEI differentiation rate in controls, but the reduced number of AEII cells in Sftpc-Ai9-Trf1 mice also affected differentiation after injury. In conclusion, telomere dysfunction- mediated AEII cell senescence promoted parenchymal inflammation in ALI, but did not enhance mortality like old age. Although the differentiation rate remained functional with old age and AEII cell senescence, AEII cell proliferative capacity was impaired in ALI, affecting the regenerative ability.
IL‐17A promotes lung fibrosis through impairing mitochondrial homeostasis in type II alveolar epithelial cells
The dysfunction of type II alveolar epithelial cells (AECIIs), mainly manifested by apoptosis, has emerged as a major component of idiopathic pulmonary fibrosis (IPF) pathophysiology. A pivotal mechanism leading to AECIIs apoptosis is mitochondrial dysfunction. Recently, interleukin (IL)‐17A has been demonstrated to have a pro‐fibrotic role in IPF, though the mechanism is unclear. In this study, we report enhanced expression of IL‐17 receptor A (IL‐17RA) in AECIIs in lung samples of IPF patients, which may be related to the accumulation of mitochondria in AECIIs of IPF. Next, we investigated this relationship in bleomycin (BLM)‐induced PF murine model. We found that IL‐17A knockout (IL‐17A−/−) mice exhibited decreased apoptosis levels of AECIIs. This was possibly a result of the recovery of mitochondrial morphology from the improved mitochondrial dynamics of AECIIs, which eventually contributed to alleviating lung fibrosis. Analysis of in vitro data indicates that IL‐17A impairs mitochondrial function and mitochondrial dynamics of mouse primary AECIIs, further promoting apoptosis. PTEN‐induced putative kinase 1 (PINK1)/Parkin signal‐mediated mitophagy is an important aspect of mitochondria homeostasis maintenance. Our data demonstrate that IL‐17A inhibits mitophagy and promotes apoptosis of AECIIs by decreasing the expression levels of PINK1. We conclude that IL‐17A exerts its pro‐fibrotic effects by inducing mitochondrial dysfunction in AECIIs by disturbing mitochondrial dynamics and inhibiting PINK1‐mediated mitophagy, thereby leading to apoptosis of AECIIs.
TNKS1BP1 mediates AECII senescence and radiation induced lung injury through suppressing EEF2 degradation
Background Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. Results Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. Conclusions Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.
Hyperoxia can Induce Lung Injury by Upregulating AECII Autophagy and Apoptosis Via the mTOR Pathway
Oxygen therapy is a crucial medical intervention, but it is undeniable that it can lead to lung damage. The mTOR pathway plays a pivotal role in governing cell survival, including autophagy and apoptosis, two phenomena deeply entwined with the evolution of diseases. However, it is unclarified whether the mTOR pathway is involved in hyperoxic acute lung injury (HALI). The current study aims to clarify the molecular mechanism underlying the pathogenesis of HALI by constructing in vitro and in vivo models using H2O2 and hyperoxia exposure, respectively. To investigate the role of mTOR, the experiment was divided into five groups, including normal group, injury group, mTOR inhibitor group, mTOR activator group, and DMSO control group. Western blotting, Autophagy double labeling, TUNEL staining, and HE staining were applied to evaluate protein expression, autophagy activity, cell apoptosis, and pathological changes in lung tissues. Our data revealed that hyperoxia can induce autophagy and apoptosis in Type II alveolar epithelial cell (AECII) isolated from the treated rats, as well as injuries in the rat lung tissues; also, H2O2 stimulation increased autophagy and apoptosis in MLE-12 cells. Noticeably, the experiments performed in both in vitro and in vivo models proved that the mTOR inhibitor Rapamycin (Rapa) functioned synergistically with hyperoxia or H2O2 to promote AECII autophagy, which led to increased apoptosis and exacerbated lung injury. On the contrary, activation of mTOR with MHY1485 suppressed autophagy activity, consequently resulting in reduced apoptosis and lung injury in H2O2-challenged MLE-12 cells and hyperoxia-exposed rats. In conclusion, hyperoxia caused lung injury via mTOR-mediated AECII autophagy.
RAGE inhibition alleviates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells
Background Advanced glycation end product receptor (RAGE) acts as a receptor of pro-inflammatory ligands and is highly expressed in alveolar epithelial cells (AECs). Autophagy in AECs has received much attention recently. However, the roles of autophagy and RAGE in the pathogenesis of acute lung injury remain unclear. Therefore, this study aimed to explore whether RAGE activation signals take part in the dysfunction of alveolar epithelial barrier through autophagic death. Methods Acute lung injury animal models were established using C57BL/6 and Ager gene knockout ( Ager −/− mice) mice in this study. A549 cells and primary type II alveolar epithelial (ATII) cells were treated with siRNA to reduce Ager gene expression. Autophagy was inhibited by 3-methyladenine (3-MA). Lung injury was assessed by histopathological examination. Cell viability was estimated by cell counting kit-8 (CCK-8) assay. The serum and bronchoalveolar lavage fluid (BALF) levels of interleukin (IL)-6, IL-8 and soluble RAGE (sRAGE) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The involvement of RAGE signals, autophagy and apoptosis was assessed using western blots, immunohistochemistry, immunofluorescence, transmission electron microscopy and TUNEL test. Results The expression of RAGE was promoted by lipopolysaccharide (LPS), which was associated with activation of autophagy both in mice lung tissues and A549 cells as well as primary ATII cells. sRAGE in BALF was positively correlated with IL-6 and IL-8 levels. Compared with the wild-type mice, inflammation and apoptosis in lung tissues were alleviated in Ager −/− mice. Persistently activated autophagy contributed to cell apoptosis, whereas the inhibition of autophagy by 3-MA protected lungs from damage. In addition, Ager knockdown inhibited LPS-induced autophagy activation and attenuated lung injury. In vitro, knockdown of RAGE significantly suppressed the activation of LPS-induced autophagy and apoptosis of A549 and primary ATII cells. Furthermore, RAGE activated the downstream STAT3 signaling pathway. Conclusion RAGE plays an essential role in the pathogenesis of ATII cells injury. Our results suggested that RAGE inhibition alleviated LPS-induced lung injury by directly suppressing autophagic apoptosis of alveolar epithelial cells.