Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,700
result(s) for
"very low density lipoprotein"
Sort by:
Lipoprotein particles exhibit distinct mechanical properties
by
Roos, Wouter H.
,
Piontek, Melissa C.
in
Apolipoproteins
,
Arteriosclerosis
,
Atomic force microscopy
2022
Lipoproteins (LPs) are micelle‐like structures with a similar size to extracellular vesicles (EVs) and are therefore often co‐isolated, as intensively discussed within the EV community. LPs from human blood plasma are of particular interest as they are responsible for the deposition of cholesterol ester and other fats in the artery, causing lesions, and eventually atherosclerosis. Plasma lipoproteins can be divided according to their size, density and composition into chylomicrons (CM), very‐low‐density lipoproteins (VLDL), low‐density lipoproteins (LDL) and high‐density lipoproteins (HDL). Here, we use atomic force microscopy for mechanical characterization of LPs. We show that the nanoindentation approach used for EV analysis can also be used to characterize LPs, revealing specific differences between some of the particles. Comparing LPs with each other, LDL exhibit a higher bending modulus as compared to CM and VLDL, which is likely related to differences in cholesterol and apolipoproteins. Furthermore, CM typically collapse on the surface after indentation and HDL exhibit a very low height after surface adhesion both being indications for the presence of LPs in an EV sample. Our analysis provides new systematic insights into the mechanical characteristics of LPs.
Journal Article
Long-term fasting improves lipoprotein-associated atherogenic risk in humans
by
Wilhelmi de Toledo Françoise
,
Grundler Franziska
,
Müller Diethard
in
Apolipoprotein B
,
Apolipoproteins
,
C-reactive protein
2021
PurposeDyslipidemia is a major health concern associated with an increased risk of cardiovascular mortality. Long-term fasting (LF) has been shown to improve plasma lipid profile. We performed an in-depth investigation of lipoprotein composition.MethodsThis observational study included 40 volunteers (50% men, aged 32–65 years), who underwent a medically supervised fast of 14 days (250 kcal/day). Changes in lipid and lipoprotein levels, as well as in lipoprotein subclasses and particles, were measured by ultracentrifugation and nuclear magnetic resonance (NMR) at baseline, and after 7 and 14 fasting days.ResultsThe largest changes were found after 14 fasting days. There were significant reductions in triglycerides (TG, − 0.35 ± 0.1 mmol/L), very low-density lipoprotein (VLDL)-TG (− 0.46 ± 0.08 mmol/L), VLDL-cholesterol (VLDL-C, − 0.16 ± 0.03 mmol/L) and low-density lipoprotein (LDL)-C (− 0.72 ± 0.14 mmol/L). Analysis of LDL subclasses showed a significant decrease in LDL1-C (− 0.16 ± 0.05 mmol/L), LDL2-C (− 0.30 ± 0.06 mmol/L) and LDL3-C (− 0.27 ± 0.05 mmol/L). NMR spectroscopy showed a significant reduction in large VLDL particles (− 5.18 ± 1.26 nmol/L), as well as large (− 244.13 ± 39.45 nmol/L) and small LDL particles (− 38.45 ± 44.04 nmol/L). A significant decrease in high-density lipoprotein (HDL)-C (− 0.16 ± 0.04 mmol/L) was observed. By contrast, the concentration in large HDL particles was significantly raised. Apolipoprotein A1 decreased significantly whereas apolipoprotein B, lipoprotein(a), fibrinogen and high-sensitivity C-reactive protein were unchanged.ConclusionOur results suggest that LF improves lipoprotein levels and lipoprotein subclasses and ameliorates the lipoprotein-associated atherogenic risk profile, suggesting a reduction in the cardiovascular risk linked to dyslipidemia.Trial RegistrationStudy registration number: DRKS-ID: DRKS00010111 Date of registration: 03/06/2016 “retrospectively registered”.
Journal Article
High-density lipoprotein sensor based on molecularly imprinted polymer
by
Lieberzeit, Peter A
,
Suticha, Chunta
,
Roongnapa, Suedee
in
Arteriosclerosis
,
Atherosclerosis
,
Biomimetics
2018
Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polymer contains methacrylic acid and N-vinylpyrrolidone in the ratio of 2:3, cross-linked with ethylene glycol dimethacrylate. On 10 MHz dual electrode quartz crystal microbalances (QCM), such HDL-MIP revealed dynamic detection range toward HDL standards in the clinically relevant ranges of 2–250 mg/dL HDL cholesterol (HDL-C) in 10 mM phosphate-buffered saline (PBS, pH = 7.4) without significant interference: low-density lipoprotein (LDL) yields 5% of the HDL signal, and both very-low-density lipoprotein (VLDL) and human serum albumin (HSA) yield 0%. The sensor reveals recovery rates between 94 and 104% at 95% confidence interval with precision of 2.3–7.7% and shows appreciable correlation (R2 = 0.97) with enzymatic colorimetric assay, the standard in clinical tests. In contrast to the latter, it achieves rapid results (10 min) during one-step analysis without the need for sample preparation.
Journal Article
Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets
2024
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Journal Article
The effects of n -3 fatty acids from flaxseed oil on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomised, double-blind, placebo-controlled trial
by
Asemi, Zatollah
,
Panahandeh, Ida
,
Aghadavod, Esmat
in
Adult
,
alpha-linolenic acid
,
Antioxidants
2020
The present study was performed to evaluate the effects of
n
-3 fatty acids from flaxseed oil on genetic and metabolic profiles in patients with gestational diabetes mellitus (GDM). This randomised, double-blind, placebo-controlled clinical trial was performed in sixty women with GDM. Participants were randomly divided into two groups to intake either 2 × 1000 mg/d
n
-3 fatty acids from flaxseed oil containing 400 mg
α
-linolenic acid in each capsule (
n
30) or placebo (
n
30) for 6 weeks.
n
-3 Fatty acid intake up-regulated PPAR-
γ
(
P
< 0·001) and LDL receptor (
P
= 0·004) and down-regulated gene expression of IL-1 (
P
= 0·002) and TNF-
α
(
P
= 0·001) in peripheral blood mononuclear cells of subjects with GDM. In addition,
n
-3 fatty acid supplementation reduced fasting plasma glucose (
P
= 0·001), insulin levels (
P
= 0·001) and insulin resistance (
P
< 0·001) and increased insulin sensitivity (
P
= 0·005) when compared with the placebo. Additionally,
n
-3 fatty acid supplementation was associated with a decrease in TAG (
P
< 0·001), VLDL-cholesterol (
P
< 0·001), total cholesterol (
P
= 0·01) and total cholesterol:HDL-cholesterol ratio (
P
= 0·01) when compared with placebo.
n
-3 Fatty acid administration was also associated with a significant reduction in high-sensitivity C-reactive protein (
P
= 0·006) and malondialdehyde (
P
< 0·001), and an increase in total nitrite (
P
< 0·001) and total glutathione levels (
P
= 0·006) when compared with the placebo.
n
-3 Fatty acid supplementation for 6 weeks to women with GDM had beneficial effects on gene expression related to insulin, lipid and inflammation, glycaemic control, lipids, inflammatory markers and oxidative stress.
Journal Article
Dietary proteins modulate high-density lipoprotein characteristics in a sex-specific way in Apoe-deficient mice
by
Barco, María
,
Surra, Joaquín C.
,
Sánchez-Marco, Javier
in
ABCA1 protein
,
Amino acids
,
Animals
2023
•Bird protein consumption reduces arteriosclerosis lesions in Apoe knockout mice.•The smallest lesion was associated with a higher ratio of PON1 to APOA1.•Males of avian groups increased Abca1 expression and reduced Scarb1 expression.•Females of the turkey group increased Lcat expression and showed larger very-low-density lipoprotein.
The type and amount of dietary protein have become a topic of renewed interest, considering their involvement in several diseases. However, little attention has been devoted to the effect of avian proteins despite their wide human consumption. In a previous study, we saw that compared with soybean protein, the consumption of avian proteins, depending on sex, resulted in similar or lower atherosclerosis with a higher paraoxonase 1 activity, an antioxidant enzyme carried by high-density lipoproteins (HDL). This suggests that under these conditions, the HDL lipoproteins may undergo important changes. The aim of this research was to study the influence of soybean, chicken, and turkey proteins on the characteristics of HDL.
Male and female Apoe-deficient mice were fed purified Western diets based on the AIN-93 diet, differing only in the protein source, for 12 wk. After this period, blood and liver samples were taken for analysis of HDL composition and hepatic expression of genes related to HDL metabolism (Abca1, Lcat, Pltp, Pon1, and Scarb1). Depending on sex, these genes define a different network of interactions. Females consuming the turkey protein–containing diet showed decreased atherosclerotic foci, which can be due to larger very-low-density lipoproteins (VLDLs) calculated by molar ratio triacylglycerols/VLDL cholesterol and higher expression of Lcat. In contrast, in males, a higher ratio of paraoxonase1 to apolipoprotein A1 decreased the oxidative status of the different lipoproteins, and augmented Abca1 expression was observed.
The source of protein has an effect on the development of atherosclerosis depending on sex by modifying HDL characteristics and the expression of genes involved in their properties.
Journal Article
Comparative assessment of LDL-C and VLDL-C estimation in familial combined hyperlipidemia using Sampson’s, Martin’s and Friedewald’s equations
by
Cruz-Bautista, Ivette
,
Vargas-Vázquez, Arsenio
,
Aguilar-Salinas, Carlos A.
in
Adult
,
Apolipoproteins
,
Apolipoproteins B - blood
2021
Background
Sampson et al. developed a novel method to estimate very low-density lipoprotein cholesterol (VLDL-C) and low-density lipoprotein cholesterol (LDL-C) in the setting of hypertriglyceridemia. Familial Combined Hyperlipidemia (FCHL) is a common primary dyslipidemia in which lipoprotein composition interferes with LDL-C estimation. This study aimed to evaluate performance of LDL-C using this new method (LDL-S) compared with LDL-C estimated by Friedewald’s and Martin eq. (LDL-F, LDL-M) in FCHL.
Methods
Data were collected from 340 subjects with confirmed FCHL. Concordance for VLDL-C measured by ultracentrifugation and LDL-C estimated using these measures compared to Sampson’s, Martin’s and Friedewald’s equations was performed using correlation coefficients, root mean squared error (RMSE) and bias. Also, concordance of misclassified metrics according to LDL-C (< 70 and < 100 mg/dL) and Apo B (< 80 and < 65 mg/dL) thresholds were assessed.
Results
Sampson’s equation was more accurate (RMSE 11.21 mg/dL; R
2
= 0.88) compared to Martin’s (RMSE 13.15 mg/dL; R
2
= 0.875) and the Friedewald’s equation (RMSE 13.7 mg/dL; R
2
= 0.869). When assessing performance according to LDL-C, Sampson’s had highest correlation and lowest RMSE compared to other equations (RMSE 19.99 mg/dL; R
2
= 0.840). Comparing performance strength across triglyceride levels, Sampson’s showed consistently improved correlations compared to Martin’s and Friedewald’s formulas for increasing triglycerides and for the FCHL phenotype of mixed dyslipidemia. Sampson’s also had improved concordance with treatment goals.
Conclusions
In FCHL, VLDL-C and LDL-C estimation using Sampson’s formula showed higher concordance with lipid targets assessed using VLDL-C obtained by ultracentrifugation compared with Friedewald’s and Martin’s equations. Implementation of Sampson’s formula could improve treatment monitoring in FCHL.
Journal Article
Lomitapide: navigating cardiovascular challenges with innovative therapies
by
Kassan, Adam
,
Abidi, Ammaar H.
,
Munkhsaikhan, Undral
in
Animal Anatomy
,
Animal Biochemistry
,
Animals
2024
Dyslipidemia is the most significant risk factor for cardiovascular diseases (CVDs) Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med, Efficacy and safety of saroglitazar for the management of dyslipidemia: A systematic review and meta-analysis of interventional studies. The current treatment strategies for managing dyslipidemia focus on reducing low-density lipoprotein cholesterol (LDL-C) to minimize the risks of atherosclerosis and myocardial infarction (MI). Homozygous Familial Hypercholesterolemia (HoFH) is an inherited autosomal dominant disease caused by a mutation in the LDL receptor (LDLr), which can lead to extremely high levels of LDL-C The Beneficial Effect of Lomitapide on the Cardiovascular System in LDLr(-/-) Mice with Obesity, The microsomal triglyceride transfer protein inhibitor lomitapide improves vascular function in mice with obesity. Although statin therapy has been the primary treatment for dyslipidemia, HoFH patients do not respond well to statins, requiring alternative therapies. Microsomal triglyceride transfer protein (MTP) inhibition has emerged as a potential therapeutic target for treating HoFH. MTP is primarily responsible for transferring triglyceride and other lipids into apolipoprotein B (ApoB) during the assembly of very low-density lipoprotein (VLDL) particles in the liver. Lomitapide, an inhibitor of MTP, has been approved for treatingof HoFH adults. Unlike statins, lomitapide does not act on the LDLr to reduce cholesterol. Instead, lomitapide lowers the levels of ApoB-containing proteins, primarily VLDL, eventually decreasing LDL-C levels. Studies have shown that lomitapide can reduce LDL-C levels by more than 50% in patients with HoFH who have failed to respond adequately to other treatments. Lowering LDL-C levels is important for preventing atherosclerosis, reducing cardiovascular risk, improving endothelial function, and promoting overall cardiovascular health, especially for patients with HoFH Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. This review paper focuses on research findings regarding the therapeutic benefits of lomitapide, highlighting its effectiveness in lowering cholesterol levels and reducing the risk of CVDs The microsomal triglyceride transfer protein inhibitor lomitapide improves vascular function in mice with obesity.
Journal Article
Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is equivalent to that from fish oil in healthy humans
2019
EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18–30 years or 50–65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.
Journal Article
Associations of diet quality and food consumption with serum biomarkers for lipid and amino acid metabolism in Finnish children: the PANIC study
2024
Purpose
To investigate the associations of overall diet quality and dietary factors with serum biomarkers for lipid and amino acid metabolism in a general population of children.
Methods
We studied 194 girls and 209 boys aged 6–8 years participating in the Physical Activity and Nutrition in Children study. Food consumption was assessed by 4-day food records and diet quality was quantified by the Finnish Children Healthy Eating Index (FCHEI). Fasting serum fatty acids, amino acids, apolipoproteins, as well as lipoprotein particle sizes were analyzed with high-throughput nuclear magnetic resonance spectroscopy. Data were analyzed using linear regression adjusted for age, sex, and body fat percentage.
Results
FCHEI was directly associated with the ratio of polyunsaturated (PUFA) to saturated fatty acids (SFA) (PUFA/SFA), the ratio of PUFA to monounsaturated fatty acids (MUFA) (PUFA/MUFA), the ratio of PUFA to total fatty acids (FA) (PUFA%), the ratio of omega-3-fatty acids to total FA (omega-3 FA%), and inversely associated with the ratio of MUFA to total FA (MUFA%), alanine, glycine, histidine and very-low density lipoprotein (VLDL) particle size. Consumption of vegetable oils and vegetable-oil-based margarine (≥ 60% fat) was directly associated with PUFA/SFA, PUFA/MUFA, PUFA%, the ratio of omega-6 FA to total FA (omega-6 FA%), and inversely associated with SFA, MUFA, SFA to total FA (SFA%), MUFA%, alanine and VLDL particle size. Consumption of high-fiber grain products directly associated with PUFA/SFA, PUFA/MUFA, omega-3 FA%, omega-6 FA%, PUFA% and inversely associated with SFA and SFA%. Fish consumption directly related to omega-3 FA and omega-3 FA%. Consumption of sugary products was directly associated with histidine and VLDL particle size. Vegetable, fruit, and berry consumption had direct associations with VLDL particle size and the ratio of apolipoprotein B to apolipoprotein A1. Consumption of low fat (< 1%) milk was directly associated with phenylalanine. A higher consumption of high-fat (≥ 1%) milk was associated with lower serum MUFA/SFA and higher SFA%. Sausage consumption was directly related to SFA% and histidine. Red meat consumption was inversely associated with glycine.
Conclusions
Better diet quality, higher in intake of dietary sources of unsaturated fat and fiber, and lower in sugary product intake were associated with more favorable levels of serum biomarkers for lipid and amino acid metabolism independent of adiposity.
Trial Registration
ClinicalTrials.gov: NCT01803776, registered March 3, 2013.
Journal Article