MbrlCatalogueTitleDetail

Do you wish to reserve the book?
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks
Journal Article

All for One or One for All? A Comparative Study of Grouped Data in Mixed-Effects Additive Bayesian Networks

2025
Request Book From Autostore and Choose the Collection Method
Overview
Additive Bayesian networks (ABNs) provide a flexible framework for modeling complex multivariate dependencies among variables of different distributions, including Gaussian, Poisson, binomial, and multinomial. This versatility makes ABNs particularly attractive in clinical research, where heterogeneous data are frequently collected across distinct groups. However, standard applications either pool all data together, ignoring group-specific variability, or estimate separate models for each group, which may suffer from limited sample sizes. In this work, we extend ABNs to a mixed-effect framework that accounts for group structure through partial pooling, and we evaluate its performance in a large-scale simulation study. We compare three strategies—partial pooling, complete pooling, and no pooling—cross a wide range of network sizes, sparsity levels, group configurations, and sample sizes. Performance is assessed in terms of structural accuracy, parameter estimation accuracy, and predictive performance. Our results demonstrate that partial pooling consistently yields superior structural and parametric accuracy while maintaining robust predictive performance across all evaluated settings for grouped data structures. These findings highlight the potential of mixed-effect ABNs as a versatile approach for learning probabilistic graphical models from grouped data with diverse distributions in real-world applications.