MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cartesian coordinates of an intrinsically defined curve
Cartesian coordinates of an intrinsically defined curve
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cartesian coordinates of an intrinsically defined curve
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cartesian coordinates of an intrinsically defined curve
Cartesian coordinates of an intrinsically defined curve

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cartesian coordinates of an intrinsically defined curve
Cartesian coordinates of an intrinsically defined curve
Journal Article

Cartesian coordinates of an intrinsically defined curve

2023
Request Book From Autostore and Choose the Collection Method
Overview
Summarizing some old research on the dynamics of a pointall body along its own trajectory, this paper established the differential relationships between the principal curvatures of a 3D curve, that is the normal curvature and the torsional curvature, and its Cartesian coordinates. The differential system thus derived is actually a dynamical system of a representative point of the curve moving along it. This dynamic system is analyzed to see the possibilities of finding analytical solutions in finite terms, using Frobenius' integrability theorem for the general case and usual integration methods for the particular case consisting of the constant ratio between the two curvatures.
Publisher
INCAS - National Institute for Aerospace Research \"Elie Carafoli\",National Institute for Aerospace Research “Elie Carafoli” - INCAS