MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
Journal Article

Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands

2023
Request Book From Autostore and Choose the Collection Method
Overview
A comprehensive comparison of the trends and drivers of global surface and canopy urban heat islands (termed Is and Ic trends, respectively) is critical for better designing urban heat mitigation strategies. However, such a global comparison remains largely absent. Using spatially continuous land surface temperatures and surface air temperatures (2003–2020), here we find that the magnitude of the global mean Is trend (0.19 ± 0.006°C/decade, mean ± SE) for 5,643 cities worldwide is nearly six‐times the corresponding Ic trend (0.03 ± 0.002°C/decade) during the day, while the former (0.06 ± 0.004°C/decade) is double the latter (0.03 ± 0.002°C/decade) at night. Variable importance scores indicate that global daytime Is trend is slightly more controlled by surface property, while background climate plays a more dominant role in regulating global daytime Ic trend. At night, both global Is and Ic trends are mainly controlled by background climate. Plain Language Summary Surface and canopy urban heat islands (surface and canopy UHIs, termed Is and Ic) are two major UHI types. These two counterparts are both related to urban population heat exposure and have long been a focus of urban climate research. However, the differences in the trends and major determinants of Is and Ic over global cities remain largely unclear. Based on spatially continuous land surface temperature and surface air temperature observations from 2003 to 2020, we find that the global mean Is trends are about 6.3 times and 2 times the Ic trends during the day and at night, respectively. During the day, the global Is trend is more regulated by surface property than by background climate, and vice versa for global Ic trend. At night, both the global Is and Ic trends are mainly regulated by background climate. These findings are important for better understanding global urban climate change and informing heat mitigation strategies. Key Points The global Is trend is six‐fold and twofold larger than the Ic trend during the day and at night, respectively During the day, global Is trend is slightly more controlled by surface property, yet background climate plays a dominant role in Ic trend At night, both global Is and Ic trends are more regulated by background climate