MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index
Journal Article

Downscaling Method for Crop Yield Statistical Data Based on the Standardized Deviation from the Mean of the Comprehensive Crop Condition Index

2025
Request Book From Autostore and Choose the Collection Method
Overview
Spatializing crop yield statistical data with administrative divisions as the basic unit helps reveal the spatial distribution characteristics of crop yield and provides necessary spatial information to support field management and government decision-making. However, owing to an insufficient understanding of the factors affecting yield, accurately depicting its spatial differences remains challenging. Taking Hailun city, Heilongjiang Province, as an example, this study proposes a yield downscaling method based on the standardized deviation from the mean of the comprehensive crop condition index (CCCI) during key phenological periods of the growing season. First, Sentinel-2 remote sensing data were used to retrieve crop condition parameters during key phenological periods, and the CCCI was constructed using the correlation between crop condition parameters in key phenological periods and statistical yield as the weight. Subsequently, regression analysis and the entropy weight method were applied to determine the spatiotemporal dynamic weights of the CCCI during key phenological stages and to calculate the standardized deviation from the mean. By combining these two components, the comprehensive spatial difference index of the crop growth condition (CSDICGC) was derived, which offered a new way to characterize the discrepancies between the pixel-level yield and statistical yield, thereby downscaling the yield statistical data from the administrative unit to the pixel scale. The results indicated that this method achieved a regional accuracy close to 100%, with a strong fit at the pixel scale. Pixel-level accuracy validation against ground-truth maize yield data resulted in an R2 of 0.82 and a mean relative error (MRE) of 4.75%. The novelty of this study was characterized by the integration of multistage crop condition parameters with dynamic spatiotemporal weighting to overcome the limitations of single-index methods. The crop yield statistical data downscaling spatialization method proposed in this paper is simple and efficient and has the potential to be popularized and applied over relatively large regions.