MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W
Journal Article

Molecular Sexing in Owls (Aves, Strigiformes) and the Unique Genetic Structure of the Chromodomain Helicase DNA-Binding Protein 1 (CHD1) Gene on Chromosome W

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background: The accurate determination of bird sex is crucial in various biological fields, including ecology, behavioral research, and conservation. However, this task remains challenging in species in which males and females exhibit similar external morphologies, such as owls. Although polymerase chain reaction (PCR)-based molecular sexing techniques that target the chromodomain helicase DNA-binding protein 1 gene found on sex chromosomes Z (CHD1-Z gene) and W (CHD1-W gene) are widely used, we encountered atypical banding patterns when applying the previously reported primers 2550F and 2718R to four wild owls of unknown sex. This study aims to reveal the owl-specific genetic structure of the CHD1 gene. Methods: We developed a new primer set and determined the nucleotide sequences—including the binding sites for the primers 2550F and 2718R—within both the CHD1-Z and CHD1-W genes. Results: Sequencing analysis, conducted using a newly developed primer set that successfully amplified both Z- and W-derived CHD1 products across various owl species, revealed a unique genetic insertion of approximately 600 bp in intron 17 of the CHD1-W gene. This insertion reversed the usual length relationship between PCR products from the chromosomes Z and W. Additionally, mutations identified in the 2550F primer binding site of the CHD1-Z gene in certain owl species may explain the failure to amplify CHD1-Z-derived PCR products. Conclusion: These findings provide valuable insights for improving molecular sexing in owls.