MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy
Journal Article

Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy

2024
Request Book From Autostore and Choose the Collection Method
Overview
The most widely used fluorophore in glioma-resection surgery, 5-aminolevulinic acid (5-ALA), is thought to cause the selective accumulation of fluorescent protoporphyrin IX (PpIX) in tumour cells. Here we show that the clinical detection of PpIX can be improved via a microscope that performs paired stimulated Raman histology and two-photon excitation fluorescence microscopy (TPEF). We validated the technique in fresh tumour specimens from 115 patients with high-grade gliomas across four medical institutions. We found a weak negative correlation between tissue cellularity and the fluorescence intensity of PpIX across all imaged specimens. Semi-supervised clustering of the TPEF images revealed five distinct patterns of PpIX fluorescence, and spatial transcriptomic analyses of the imaged tissue showed that myeloid cells predominate in areas where PpIX accumulates in the intracellular space. Further analysis of external spatially resolved metabolomics, transcriptomics and RNA-sequencing datasets from glioblastoma specimens confirmed that myeloid cells preferentially accumulate and metabolize PpIX. Our findings question 5-ALA-induced fluorescence in glioma cells and show how 5-ALA and TPEF imaging can provide a window into the immune microenvironment of gliomas. The clinical detection of fluorescent protoporphyrin IX during glioma-resection surgery can be improved via a microscope that pairs stimulated Raman histology and two-photon excitation fluorescence microscopy.