MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Journal Article

Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1

2008
Request Book From Autostore and Choose the Collection Method
Overview
Adeno-associated virus (AAV) is frequently used for gene transfer into the central nervous system (CNS). Similar to adenovirus and rabies virus, AAV can be taken up by axons and retrogradely transported, resulting in neuronal gene expression distant from the injection site. We investigated the retrograde transport properties of self-complementary AAV (scAAV) serotypes 1–6 following peripheral injection. Injection of scAAV into either rat extensor carpi muscle or sciatic nerve resulted in detectable retrograde vector transport and reporter gene expression in spinal cord motor neurons (MNs). Serotype 1 resulted in the highest level of retrograde transport, with 4.1 ± 0.3% of cervical MNs projecting to the extensor carpi transduced following intramuscular injection, and 7.5 ± 3.1% of lumbar MNs transduced after sciatic nerve injection. In contrast to scAAV1, retrograde transduction with scAAV2 was undetectable following intramuscular injection, and was detected in only 0.81 ± 0.15% of MNs projecting to the sciatic nerve following intranerve injection. Furthermore, sciatic injection of single-stranded AAV1 required injection of tenfold higher numbers of viral particles for detectable transgene expression compared to scAAV1, and then only 0.91 ± 0.24% of lumbar MNs were transduced. Our data provide the basis for increased retrograde transduction efficiency using peripheral injections of scAAV1 vectors for therapeutic gene delivery to the spinal cord.