MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effects of altered dry season length and plant inputs on soluble soil carbon
Effects of altered dry season length and plant inputs on soluble soil carbon
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effects of altered dry season length and plant inputs on soluble soil carbon
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effects of altered dry season length and plant inputs on soluble soil carbon
Effects of altered dry season length and plant inputs on soluble soil carbon

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effects of altered dry season length and plant inputs on soluble soil carbon
Effects of altered dry season length and plant inputs on soluble soil carbon
Journal Article

Effects of altered dry season length and plant inputs on soluble soil carbon

2018
Request Book From Autostore and Choose the Collection Method
Overview
Soil moisture controls microbial activity and soil carbon cycling. Because microbial activity decreases as soils dry, decomposition of soil organic matter (SOM) is thought to decrease with increasing drought length. Yet, microbial biomass and a pool of water-extractable organic carbon (WEOC) can increase as soils dry, perhaps implying microbes may continue to break down SOM even if drought stressed. Here, we test the hypothesis that WEOC increases as soils dry because exoenzymes continue to break down litter, while their products accumulate because they cannot diffuse to microbes. To test this hypothesis, we manipulated field plots by cutting off litter inputs and by irrigating and excluding precipitation inputs to extend or shorten the length of the dry season. We expected that the longer the soils would remain dry, the more WEOC would accumulate in the presence of litter, whereas shortening the length of the dry season, or cutting off litter inputs, would reduce WEOC accumulation. Lastly, we incubated grass roots in the laboratory and measured the concentration of reducing sugars and potential hydrolytic enzyme activities, strictly to understand the mechanisms whereby exoenzymes break down litter over the dry season. As expected, extending dry season length increased WEOC concentrations by 30% above the 108 μg C/g measured in untreated plots, whereas keeping soils moist prevented WEOC from accumulating. Contrary to our hypothesis, excluding plant litter inputs actually increased WEOC concentrations by 40% above the 105 μg C/g measured in plots with plants. Reducing sugars did not accumulate in dry senesced roots in our laboratory incubation. Potential rates of reducing sugar production by hydrolytic enzymes ranged from 0.7 to 10 μmol·g−1·h−1 and far exceeded the rates of reducing sugar accumulation (̃0.001 μmol·g−1·h−1). Our observations do not support the hypothesis that exoenzymes continue to break down litter to produce WEOC in dry soils. Instead, we develop the argument that physical processes are more likely to govern short-term WEOC dynamics via slaking of microaggregates that stabilize SOM and through WEOC redistribution when soils wet up, as well as through less understood effects of drought on the soil mineral matrix.