MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Polymicrobial Nature of Tick-Borne Diseases
Polymicrobial Nature of Tick-Borne Diseases
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Polymicrobial Nature of Tick-Borne Diseases
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Polymicrobial Nature of Tick-Borne Diseases
Polymicrobial Nature of Tick-Borne Diseases

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Polymicrobial Nature of Tick-Borne Diseases
Polymicrobial Nature of Tick-Borne Diseases
Journal Article

Polymicrobial Nature of Tick-Borne Diseases

2019
Request Book From Autostore and Choose the Collection Method
Overview
Tick-borne diseases have increased in prevalence in the United States and abroad. The reasons for these increases are multifactorial, but climate change is likely to be a major factor. One of the main features of the increase is the geographic expansion of tick vectors, notably Amblyomma americanum , which has brought new pathogens to new areas. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In addition, new pathogens that are cotransmitted by Ixodes scapularis have been discovered and have led to difficult diagnoses and to disease severity. Of these, Borrelia burgdorferi , the agent of Lyme disease, continues to be the most frequently transmitted pathogen. However, Babesia microti , Borrelia miyamotoi (another spirochete), Anaplasma phagocytophilum , and Powassan virus are frequent cotransmitted agents. Polymicrobial infection has important consequences for the diagnosis and management of tick-borne diseases. Tick-borne diseases have doubled in the last 12 years, and their geographic distribution has spread as well. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In the last few years, new agents have been discovered, and genetic changes have helped in the spread of pathogens and ticks. Polymicrobial infections, mostly in Ixodes scapularis , can complicate diagnostics and augment disease severity. Amblyomma americanum ticks have expanded their range, resulting in a dynamic and complex situation, possibly fueled by climate change. To document these changes, using molecular biology strategies for pathogen detection, an assessment of 12 microbes (9 pathogens and 3 symbionts) in three species of ticks was done in Suffolk County, New York. At least one agent was detected in 63% of I. scapularis ticks . Borrelia burgdorferi was the most prevalent pathogen (57% in adults; 27% in nymphs), followed by Babesia microti (14% in adults; 15% in nymphs), Anaplasma phagocytophilum (14% in adults; 2% in nymphs), Borrelia miyamotoi (3% in adults), and Powassan virus (2% in adults). Polymicrobial infections were detected in 22% of I. scapularis ticks, with coinfections of B. burgdorferi and B. microti (9%) and of B. burgdorferi and A. phagocytophilum (7%). Three Ehrlichia species were detected in 4% of A. americanum ticks. The rickettsiae constituted the largest prokaryotic biomass of all the ticks tested and included Rickettsia amblyommatis , Rickettsia buchneri , and Rickettsia montanensis . The high rates of polymicrobial infection in ticks present an opportunity to study the biological interrelationships of pathogens and their vectors. IMPORTANCE Tick-borne diseases have increased in prevalence in the United States and abroad. The reasons for these increases are multifactorial, but climate change is likely to be a major factor. One of the main features of the increase is the geographic expansion of tick vectors, notably Amblyomma americanum , which has brought new pathogens to new areas. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In addition, new pathogens that are cotransmitted by Ixodes scapularis have been discovered and have led to difficult diagnoses and to disease severity. Of these, Borrelia burgdorferi , the agent of Lyme disease, continues to be the most frequently transmitted pathogen. However, Babesia microti , Borrelia miyamotoi (another spirochete), Anaplasma phagocytophilum , and Powassan virus are frequent cotransmitted agents. Polymicrobial infection has important consequences for the diagnosis and management of tick-borne diseases.

MBRLCatalogueRelatedBooks