MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MinLinMo: a minimalist approach to variable selection and linear model prediction
MinLinMo: a minimalist approach to variable selection and linear model prediction
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MinLinMo: a minimalist approach to variable selection and linear model prediction
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MinLinMo: a minimalist approach to variable selection and linear model prediction
MinLinMo: a minimalist approach to variable selection and linear model prediction

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MinLinMo: a minimalist approach to variable selection and linear model prediction
MinLinMo: a minimalist approach to variable selection and linear model prediction
Journal Article

MinLinMo: a minimalist approach to variable selection and linear model prediction

2024
Request Book From Autostore and Choose the Collection Method
Overview
Generating prediction models from high dimensional data often result in large models with many predictors. Causal inference for such models can therefore be difficult or even impossible in practice. The stand-alone software package MinLinMo emphasizes small linear prediction models over highest possible predictability with a particular focus on including variables correlated with the outcome, minimal memory usage and speed. MinLinMo is demonstrated on large epigenetic datasets with prediction models for chronological age, gestational age, and birth weight comprising, respectively, 15, 14 and 10 predictors. The parsimonious MinLinMo models perform comparably to established prediction models requiring hundreds of predictors.