MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions
Journal Article

Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions

2020
Request Book From Autostore and Choose the Collection Method
Overview
Aerosol composition and sources have been extensively studied in developed regions in China. However, aerosol chemistry in coastal regions of eastern China with high industrial emissions remains poorly characterized. Here we present a comprehensive characterization of aerosol composition and sources near two large steel plants in a coastal city in Shandong in fall and spring using a PM2.5 time-of-flight aerosol chemical speciation monitor. The average (±1σ) mass concentration of PM2.5 in spring 2019 (54±44 µg m−3) was approximately twice that (26±23 µg m−3) in fall 2018. Aerosol composition was substantially different between the two seasons. While organics accounted for ∼30 % of the total PM2.5 mass in both seasons, sulfate showed a considerable decrease from 28 % in September to 16 % in March, which was associated with a large increase in nitrate contribution from 17 % to 32 %. Positive matrix factorization analysis showed that secondary organic aerosol (SOA) dominated the total OA in both seasons, accounting on average for 92 % and 86 %, respectively, while the contribution of traffic-related hydrocarbon-like OA was comparable (8 %–9 %). During this study, we observed significant impacts of steel plant emissions on aerosol chemistry nearby. The results showed that aerosol particles emitted from the steel plants were overwhelmingly dominated by ammonium sulfate and/or ammonium bisulfate with the peak concentration reaching as high as 224 µg m−3. Further analysis showed similar mass ratios for NOx∕CO (0.014) and NOx∕SO2 (1.24) from the two different steel plants, which were largely different from those during periods in the absence of industrial plumes. Bivariate polar plot analysis also supported the dominant source region of ammonium sulfate, CO, and SO2 from the southwest steel plants. Our results might have significant implications for better quantification of industrial emissions using ammonium sulfate and the ratios of gaseous species as tracers in industrial regions and nearby in the future.