MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improving crop production using an agro-deep learning framework in precision agriculture
Improving crop production using an agro-deep learning framework in precision agriculture
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improving crop production using an agro-deep learning framework in precision agriculture
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improving crop production using an agro-deep learning framework in precision agriculture
Improving crop production using an agro-deep learning framework in precision agriculture

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improving crop production using an agro-deep learning framework in precision agriculture
Improving crop production using an agro-deep learning framework in precision agriculture
Journal Article

Improving crop production using an agro-deep learning framework in precision agriculture

2024
Request Book From Autostore and Choose the Collection Method
Overview
Background The study focuses on enhancing the effectiveness of precision agriculture through the application of deep learning technologies. Precision agriculture, which aims to optimize farming practices by monitoring and adjusting various factors influencing crop growth, can greatly benefit from artificial intelligence (AI) methods like deep learning. The Agro Deep Learning Framework (ADLF) was developed to tackle critical issues in crop cultivation by processing vast datasets. These datasets include variables such as soil moisture, temperature, and humidity, all of which are essential to understanding and predicting crop behavior. By leveraging deep learning models, the framework seeks to improve decision-making processes, detect potential crop problems early, and boost agricultural productivity. Results The study found that the Agro Deep Learning Framework (ADLF) achieved an accuracy of 85.41%, precision of 84.87%, recall of 84.24%, and an F1-Score of 88.91%, indicating strong predictive capabilities for improving crop management. The false negative rate was 91.17% and the false positive rate was 89.82%, highlighting the framework's ability to correctly detect issues while minimizing errors. These results suggest that ADLF can significantly enhance decision-making in precision agriculture, leading to improved crop yield and reduced agricultural losses. Conclusions The ADLF can significantly improve precision agriculture by leveraging deep learning to process complex datasets and provide valuable insights into crop management. The framework allows farmers to detect issues early, optimize resource use, and improve yields. The study demonstrates that AI-driven agriculture has the potential to revolutionize farming, making it more efficient and sustainable. Future research could focus on further refining the model and exploring its applicability across different types of crops and farming environments.