MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
Journal Article

Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation

2025
Request Book From Autostore and Choose the Collection Method
Overview
Postoperative atrial fibrillation (poAF) is AF occurring days after surgery, with a prevalence of 33% among patients undergoing open-heart surgery. The degree of postoperative inflammation correlates with poAF risk, but less is known about the cellular and molecular mechanisms driving postoperative atrial arrhythmogenesis. We performed single-cell RNA-seq comparing atrial nonmyocytes from mice with and without poAF, which revealed infiltrating CCR2+ macrophages to be the most altered cell type. Pseudotime trajectory analyses identified Il-6 as a gene of interest driving in macrophages, which we confirmed in pericardial fluid collected from human patients after cardiac surgery. Indeed, macrophage depletion and macrophage-specific Il6ra conditional knockout (cKO) prevented poAF in mice. Downstream STAT3 inhibition with TTI-101 and cardiomyocyte-specific Stat3 cKO rescued poAF, indicating a proarrhythmogenic role of STAT3 in poAF development. Confocal imaging in isolated atrial cardiomyocytes (ACMs) uncovered what we believe to be a novel link between STAT3 and CaMKII-mediated ryanodine receptor-2 (RyR2)-Ser(S)2814 phosphorylation. Indeed, nonphosphorylatable RyR2S2814A mice were protected from poAF, and CaMKII inhibition prevented arrhythmogenic Ca2+ mishandling in ACMs from mice with poAF. Altogether, we provide multiomic, biochemical, and functional evidence from mice and humans that IL-6-STAT3-CaMKII signaling driven by infiltrating atrial macrophages is a pivotal driver of poAF, which portends therapeutic utility for poAF prevention.
Publisher
American Society for Clinical Investigation