MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh
Journal Article

Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh

2011
Request Book From Autostore and Choose the Collection Method
Overview
Background The study attempts to develop an ordinal logistic regression (OLR) model to identify the determinants of child malnutrition instead of developing traditional binary logistic regression (BLR) model using the data of Bangladesh Demographic and Health Survey 2004. Methods Based on weight-for-age anthropometric index (Z-score) child nutrition status is categorized into three groups-severely undernourished (< -3.0), moderately undernourished (-3.0 to -2.01) and nourished (≥-2.0). Since nutrition status is ordinal, an OLR model-proportional odds model (POM) can be developed instead of two separate BLR models to find predictors of both malnutrition and severe malnutrition if the proportional odds assumption satisfies. The assumption is satisfied with low p-value (0.144) due to violation of the assumption for one co-variate. So partial proportional odds model (PPOM) and two BLR models have also been developed to check the applicability of the OLR model. Graphical test has also been adopted for checking the proportional odds assumption. Results All the models determine that age of child, birth interval, mothers' education, maternal nutrition, household wealth status, child feeding index, and incidence of fever, ARI & diarrhoea were the significant predictors of child malnutrition; however, results of PPOM were more precise than those of other models. Conclusion These findings clearly justify that OLR models (POM and PPOM) are appropriate to find predictors of malnutrition instead of BLR models.