MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing
Journal Article

Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing

2020
Request Book From Autostore and Choose the Collection Method
Overview
Many methods of spatial smoothing have been developed, for both point data as well as areal data. In Bayesian spatial models, this is achieved by purposefully designed prior(s) or smoothing functions which smooth estimates towards a local or global mean. Smoothing is important for several reasons, not least of all because it increases predictive robustness and reduces uncertainty of the estimates. Despite the benefits of smoothing, this attribute is all but ignored when it comes to model selection. Traditional goodness-of-fit measures focus on model fit and model parsimony, but neglect \"goodness-of-smoothing\", and are therefore not necessarily good indicators of model performance. Comparing spatial models while taking into account the degree of spatial smoothing is not straightforward because smoothing and model fit can be viewed as opposing goals. Over- and under-smoothing of spatial data are genuine concerns, but have received very little attention in the literature. This paper demonstrates the problem with spatial model selection based solely on goodness-of-fit by proposing several methods for quantifying the degree of smoothing. Several commonly used spatial models are fit to real data, and subsequently compared using the goodness-of-fit and goodness-of-smoothing statistics. The proposed goodness-of-smoothing statistics show substantial agreement in the task of model selection, and tend to avoid models that over- or under-smooth. Conversely, the traditional goodness-of-fit criteria often don't agree, and can lead to poor model choice. In particular, the well-known deviance information criterion tended to select under-smoothed models. Some of the goodness-of-smoothing methods may be improved with modifications and better guidelines for their interpretation. However, these proposed goodness-of-smoothing methods offer researchers a solution to spatial model selection which is easy to implement. Moreover, they highlight the danger in relying on goodness-of-fit measures when comparing spatial models.