MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The seahorse genome and the evolution of its specialized morphology
The seahorse genome and the evolution of its specialized morphology
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The seahorse genome and the evolution of its specialized morphology
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The seahorse genome and the evolution of its specialized morphology
The seahorse genome and the evolution of its specialized morphology

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The seahorse genome and the evolution of its specialized morphology
The seahorse genome and the evolution of its specialized morphology
Journal Article

The seahorse genome and the evolution of its specialized morphology

2016
Request Book From Autostore and Choose the Collection Method
Overview
Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes . Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4 , a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses. Here, the genome sequence of the tiger tail seahorse is reported and comparative genomic analyses with other ray-finned fishes are used to explore the genetic basis of the unique morphology and reproductive system of the seahorse. Evolution at a gallop Seahorses are prime examples of the exuberance of evolution and are unique among bony fish on several counts, including their equine body shape and male brood pouch. An international collaboration reporting in this issue of Nature has determined the genome sequence of a seahorse ( Hippocampus comes , the tiger tail seahorse). They find it to be the most rapidly evolving fish genome studied so far. H. comes is among the most commonly traded seahorse species—dried for traditional medicines and live for the aquarium trade—and is on the IUCN Red List as a 'vulnerable' species. Analysis of the genomic sequence provides insights into the evolution of its unique morphology. Of note is the absence of a master control gene, tbx4 , which functions in the development of hindlimbs and pelvic fins. Pelvic fins are missing in seahorses, and tbx4 -knockout mutant zebrafish also lack pelvic fins.