MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
Journal Article

A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma

2017
Request Book From Autostore and Choose the Collection Method
Overview
A subset of Kras and p53 mutant cancer cells acts as a Wnt-producing niche for another cancer cell subset, and porcupine inhibition disrupts Wnt secretion in this niche, thereby suppressing proliferative potential and leading to therapeutic benefit. Lung cancer niche drives tumour growth Lung adenocarcinomas are aggressive tumours which are associated with poor treatment outcome. Tyler Jacks and colleagues now show that lung adenocarcinomas display two distinct subpopulations of tumour cells. One of these shows high levels of Wnt signalling and gives rise to the second one that produces Wnt ligands. The latter population fuels tumour growth of the former, showing that lung cancer cells can produce their own niche. These findings shed new light on the mechanisms underlying intratumoural heterogeneity which may have therapeutic implications. The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells 1 , 2 . Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration 3 , 4 , 5 . Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies.