MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan
Journal Article

Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: the case for traffic emissions in Japan

2021
Request Book From Autostore and Choose the Collection Method
Overview
CO2 emissions from fossil fuel combustion (FFCO2) are conventionally estimated from fuel used (as activity data (AD)) and CO2 emissions factor. Recent traffic emission changes under the impact of the COVID-19 pandemic have been estimated using emerging non-fuel consumption data, such as human mobility data that tech companies reported as AD, due to the unavailability of timely fuel statistics. The use of such unconventional activity data (UAD) might allow us to provide emission estimates in near-real time; however, the errors and uncertainties associated with such estimates are expected to be larger than those of common FFCO2 inventory estimates, and thus should be provided along with a thorough evaluation/validation of the methodology and the resulting estimates. Here, we show the impact of COVID-19 on traffic CO2 emissions over the first six months of 2020 in Japan. We calculated CO2 monthly emissions using fuel consumption data and assessed the emission changes relative to 2019. Regardless of Japan’s soft approach to COVID-19, traffic emissions significantly declined by 23.8% during the state of emergency in Japan (April–May). We also compared relative emission changes among different estimates available. Our analysis suggests that UAD-based emission estimates during April and May could be biased by −19.6% to 12.6%. We also used traffic count data for examining the performance of UAD as a proxy for traffic and/or CO2 emissions. We found the assumed proportional relationship between traffic changes and CO2 emissions was not enough for estimating emissions with accuracy, and moreover, the traffic-based approach failed to capture emission seasonality. Our study highlighted the challenges and difficulties in repurposing data, especially ones with limited traceability/reproducibility, for modeling human activities and assessing the impact on the environment, and the importance of a thorough error and uncertainty assessment before using these data in policy applications.