MbrlCatalogueTitleDetail

Do you wish to reserve the book?
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment
Journal Article

SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment

2016
Request Book From Autostore and Choose the Collection Method
Overview
Most tumors initially respond to cytotoxic treatments, but acquired resistance often follows. The tumor microenvironment (TME) is a major barrier to clinical success by compromising therapeutic efficacy, and pathological relevance of multiple soluble factors released by a therapeutically remodeled TME remains largely unexplored. Here we show that the secreted frizzled-related protein 2 (SFRP2), a Wnt pathway modulator, is produced by human primary fibroblasts after genotoxic treatments. SFRP2 induction is remarkable in tumor stroma, with transcription mainly modulated by the nuclear factor-κB (NF-κB) complex, a property shared by several effectors of the DNA damage secretory program. Instead of directly altering canonical Wnt signaling, SFRP2 augments β-catenin activities initiated by WNT16B, another soluble factor from DNA-damaged stroma. WNT16B recognizes cancer cell surface receptors including frizzled (FZD) 3/4/6, a process enhanced by SFRP2, coordinated by the co-receptor LRP6 but subject to abrogation by DKK1. Importantly, we found WNT16B plays a central role in promoting advanced malignancies particularly acquired resistance by counteracting cell death, an effect that can be minimized by a neutralizing antibody co-administered with classical chemotherapy. Furthermore, DNA damage-triggered expression of WNT16B is systemic, imaged by significant induction among diverse solid organs and circulation in peripheral blood, thereby holding promise as not only a TME-derived anticancer target but also a novel biomarker for clinical evaluation of treatment efficacy. Overall, our study substantiates the biological complexity and pathological implication of a therapy-activated TME, and provides the proof of principle of co-targeting tumor and the TME to prevent acquired resistance, with the aim of improving intervention outcome in an era of precision medicine.