نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • نوع المحتوى
      نوع المحتوى
      امسح الكل
      نوع المحتوى
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • الناشر
    • المصدر
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
41 نتائج ل "Auzinsh, Marcis"
صنف حسب:
Towards Two Bloch Sphere Representation of Pure Two-Qubit States and Unitaries
We extend Bloch sphere formalism to pure two-qubit systems. Combining insights from Geometric Algebra and the analysis of entanglement in different conjugate bases we identify two Bloch sphere geometry that is suitable for representing maximally entangled states. It turns out that the relative direction of the coordinate axes of the two Bloch spheres may be used to describe the states. Moreover, the coordinate axes of one Bloch sphere should be rignt-handed and those of the other one should be left-handed. We describe and depict separable and maximally entangled states as well as entangling and non-entangling rotations. We also offer a graphical representation of the workings of a CNOT gate for different inputs. Finally, we provide a way to also represent partially entangled states and describe entanglement measures related to the surface area of the sphere enclosing the state representation.
Unitarity of Decoherence Implies Possibility of Decoherence-like Dynamics towards Macroscopic Superpositions
Quantum decoherence is crucial to understanding the emergence of the classical world from the underlying quantum reality. Decoherence dynamics are unitary, although they superselect a preferred eigenbasis. Decoherence dynamics result in stable macroscopic, localized, classical-like states. We show that the above-mentioned facts imply the possibility of the existence of decoherence-like dynamics that result in stable macroscopic non-localized non-classical-like states. Being rooted in the fabric of the decoherence theory itself, this property implies environments that steer the decoherence towards, for example, spatial superpositions of macroscopic objects. To demonstrate this, we provide thought-experimental, mathematical and philosophical arguments.
A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically induced transparency
Abstract The combination of Rydberg atoms and electromagnetically induced transparency (EIT) has been extensively studied in the strong-interaction regime. Here we proposed utilizing an EIT medium with a high optical depth (OD) and a Rydberg state of low principal quantum number to create a many-body system of Rydberg polaritons in the weak-interaction regime. The phase shift and attenuation induced by the dipole–dipole interaction (DDI) were still significant, and can be viewed as the consequences of elastic and inelastic collisions among Rydberg polaritons. We further observed that the width of the transverse momentum distribution of Rydberg polaritons at the exit of the system became notably smaller as compared with that at the entrance. The observation demonstrates the cooling effect in this system. The μs-long interaction time due to the high-OD EIT medium plus the μm 2 -size collision cross section due to the DDI suggests a feasible platform of polariton Bose–Einstein condensation.
Optically Polarized Atoms
An accessible textbook for students and practitioners of atomic, molecular, and optical physics. It will be useful for scientists working with lasers. The book comes with an extensive freely downloadable software package and many colourful and animated illustrations. Additional materials are available for instructors.
Ordering the processes with indefinite causal order
We show a method of describing processes with indefinite causal order (ICO) by a definite causal order. We do so by relabeling the processes that take place in the circuit in accordance with the basis of measurement of control qubit. Causal nonseparability is alleviated at a cost of nonlocality of the acting processes. This result highlights the key role of superposition in creating the paradox of ICO. We also draw attention to the issue of growing incompatibility of language in its current form (especially the logical structures it embodies) with the quantum logic.
Relating quantum incoherence, entanglement and superluminal signalling
Hereby we inspect two-partite entanglement using thought experiment that relates properties of incoherently mixed states to the impossibility of faster-than-light (FTL) signalling. We show that if there appears a way to distinguish ensembles of particles that are described by the same density matrix, but are generated using different pure states - properties of entanglement (namely, non-classical correlations) could be employed to create an FTL signalling device. We do not claim FTL signalling is possible, rather, we establish the logical connection between the aforementioned properties of current physical theory which has not so far been evident.
On Interchangeability of Probe-Object Roles in Quantum-Quantum Interaction-Free Measurement
In this paper we examine Interaction-free measurement (IFM) where both the probe and the object are quantum particles. We argue that in this case the description of the measurement procedure must by symmetrical with respect to interchange of the roles of probe and object. A thought experiment is being suggested that helps to determine what does and what doesn't happen to the state of the particles in such a setup. It seems that unlike the case of classical object, here the state of both the probe and the object must change. A possible explanation of this might be that the probe and the object form an entangled pair as a result of non-interaction.
The evolution and revival structure of angular momentum quantum wave packets
In this paper, a coherent superposition of angular-momentum states created by absorption of polarized light by molecules is analyzed. Attention is paid to the time evolution of wave packets representing the spatial orientation of the internuclear axis of a diatomic molecule. Two examples are considered in detail. Molecules absorbing light in a permanent magnetic field experiencing the Zeeman effect and molecules absorbing light in a permanent electric field experiencing the quadratic Stark effect. In a magnetic field, we have a wave packet that evolves in time exactly as a classical dipole oscillator in a permanent magnetic field (classical-physics picture of the Zeeman effect). In the second case, we have a wave packet that goes through periodical changes of shape of the packet with revivals of the initial shape. This is pure quantum behavior. The classical motion of angular momentum in an electric field in the case of a quadratic Stark effect is known to be a periodic. Solutions obtained for wave packet evolution are briefly compared with Rydberg-state coherent wave packets and harmonic-oscillator wave packets. Zeeman and Stark effects in small molecules continuously attract the attention of researchers, theoreticians, as well as experimentalists. These investigations allow us to obtain a deeper understanding of the interaction of molecules with stationary external fields and also can be used as a practical tool to measure different molecular characteristics, such as permanent electric or magnetic dipole moments, intramolecular perturbations, etc. It is worthwhile analyzing these effects as an evolution of wave packets. All this motivates a comparison of the quantum and classical picture of Zeeman and Stark effects in molecules.PACS No.: 33.55.Be
Searching for alignment-to-orientation conversion in the ground state of atomic Cs with circularly polarized laser probe
In this study we explored the possibilities for observing the angular momentum alignment-to-orientation conversion (AOC) in the ground state of various alkali metals: K, Rb, Cs. For theoretical analysis we used a model that is based on the Optical Bloch equations for the density matrix. Our model includes the interaction of all neighboring hyperfine levels with laser radiation, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. Additionally we simulated signals where the ground- or the excited-state coherent processes were numerically switched off in order to determine the origins of the features of the obtained signals. We also performed experiments on Cs atoms with two laser beams: a linearly polarized Cs \\(D_1\\) pump and circularly polarized Cs \\(D_2\\) probe. We used the pump beam to create angular momentum alignment in the ground state and observed the transmission signal of the probe beam as we changed the magnetic field. A detailed analysis of the experimentally obtained transmission signal from a single circularly polarized probe laser component is provided. Finally, prospects for observing AOC conversion experimentally are discussed, as well as experiments were even a weak AOC signal could lead to systematic errors.