نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
6 نتائج ل "Riley, Joelle"
صنف حسب:
LARS2 variants can present as premature ovarian insufficiency in the absence of overt hearing loss
Premature ovarian insufficiency (POI) affects 1 in 100 women and is a leading cause of female infertility. There are over 80 genes in which variants can cause POI, with these explaining only a minority of cases. Whole exome sequencing (WES) can be a useful tool for POI patient management, allowing clinical care to be personalized to underlying cause. We performed WES to investigate two French sisters, whose only clinical complaint was POI. Surprisingly, they shared one known and one novel likely pathogenic variant in the Perrault syndrome gene, LARS2. Using amino-acylation studies, we established that the novel missense variant significantly impairs LARS2 function. Perrault syndrome is characterized by sensorineural hearing loss in addition to POI. This molecular diagnosis alerted the sisters to the significance of their difficulty in following conversation. Subsequent audiology assessment revealed a mild bilateral hearing loss. We describe the first cases presenting with perceived isolated POI and causative variants in a Perrault syndrome gene. Our study expands the phenotypic spectrum associated with LARS2 variants and highlights the clinical benefit of having a genetic diagnosis, with prediction of potential co-morbidity and prompt and appropriate medical care, in this case by an audiologist for early detection of hearing loss.
Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia
Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2. Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects. PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-α and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism. In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.
Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia
BACKGROUND: Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2. METHODS: Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects. RESULTS: PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-alpha and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism. CONCLUSION: In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.