نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • نوع المحتوى
      نوع المحتوى
      امسح الكل
      نوع المحتوى
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • الناشر
    • المصدر
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
44 نتائج ل "Rochester, Simon"
صنف حسب:
Magnetic Resonance Imaging with an Optical Atomic Magnetometer
We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal.
Remote sensing of geomagnetic fields and atomic collisions in the mesosphere
Magnetic-field sensing has contributed to the formulation of the plate-tectonics theory, mapping of underground structures on Earth, and the study of magnetism of other planets. Filling the gap between space-based and near-Earth observations, we demonstrate a remote measurement of the geomagnetic field at an altitude of 85-100 km. The method consists of optical pumping of atomic sodium in the mesosphere with an intensity-modulated laser beam, and ground-based observation of the resultant magneto-optical resonance near the Larmor precession frequency. Here we validate this technique and measure the Larmor precession frequency of sodium and the corresponding magnetic field with an accuracy level of 0.28 mG Hz . These observations allow the characterization of atomic-collision processes in the mesosphere. Remote detection of mesospheric magnetic fields has potential applications such as mapping magnetic structures in the lithosphere, monitoring space weather, and electric currents in the ionosphere.
Magnetometry with mesospheric sodium
Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics.
Optically Polarized Atoms
An accessible textbook for students and practitioners of atomic, molecular, and optical physics. It will be useful for scientists working with lasers. The book comes with an extensive freely downloadable software package and many colourful and animated illustrations. Additional materials are available for instructors.
Magnetic resonance imaging with an optical atomicmagnetometer
Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample \"fillingfactor.\" Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.
Modeling Nonlinear Magneto-optical Effects in Atomic Vapors
Nonlinear magneto-optical processes are a rich source of interesting and useful phenomena, with both practical and fundamental-physics applications. Theoretical modeling is helpful for understanding and visualizing the mechanisms for nonlinear magneto-optical effects (NMOE), and for analyzing and optimizing devices based on these effects. Part I of this Thesis describes Bloch-equation methods and visualization techniques that can be used to model a wide variety of NMOE in atomic vapors. Part II presents several applications of the methods, including the investigation and visualization of a specific effect involving radio-frequency fields, a study of the general consequences of hyperfine structure on NMOE, and modeling and optimization of systems for laser guide stars. Appendices present additional mathematical material and describe a Mathematica package used for density-matrix calculations.
Suppression of nonlinear Zeeman effect and heading error in earth-field-range alkali-vapor magnetometers
The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of \"heading error\" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in-phase with the precessing magnetization. In an earth-range field, a multi-component asymmetric magnetic-resonance line with ? 60 Hz width collapses into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of earth-surveying magnetometers by increasing the magnetic resonance amplitude, decreasing its width and removing the important and limiting heading-error systematic.
All-Optical Spin Locking in Alkali-Vapor Magnetometers
The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. We demonstrate a scheme to suppress the nonlinear Zeeman effect all optically based on spin locking. Spin locking is achieved with an effective oscillating magnetic field provided by the AC Stark-shift of an intensity-modulated and polarization-modulated laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line with about 100 Hz width in the Earth-field range into a peak with a central component width of 25Hz. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude and decreasing its width. Advantage of an all-optical approach is the absence of cross-talk between nearby sensors when these are used in a gradiometric or in an array arrangement.