نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
320 نتائج ل "Anticyclonic circulation"
صنف حسب:
Summer climate variability over Korea in association with diverse features of ENSO evolution
This study investigates the summer climate variability over Korea that is associated with diverse features of El Niño-Southern Oscillation (ENSO) evolution. Four different ENSO evolution features were analyzed, and the related Korean climate variability during July and August are investigated. The two evolution phases in which El Niño transitions into La Niña and El Niño develops from a neutral state show roughly similar circulation features in affecting the Korean summer climate, but with opposite signs. During the transition of El Niño into La Niña (after El Niño develops from a neutral state), the positive (negative) western North Pacific anticyclonic circulation anomaly directly affects Korea in August, producing a significant warm (cold) surface air temperature (SAT) anomaly in Korea. Notably, the SAT that occurs in July generally exhibits an opposite tendency to that of August in Korea, displaying subseasonal variations. However, the persistent phases of La Niña and El Niño exhibit distinctive features from the two transition phases mentioned. During the persistent La Niña phase, the Pacific-Japan like atmospheric circulation pattern affects Korea, showing a significant warm SAT anomaly over Korea in July, and a roughly similar situation with opposite signs is observed in the persistent El Niño phase. In these cases, the Korean SAT in August exhibits similar anomalies to July. The distinctive variability in the summer climate of Korea during the diverse ENSO evolution phases presented in this study provides a statistical basis for understanding the Korean summer climate in relation to ENSO.
Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003
In recent decades, an increasing persistence of atmospheric circulation patterns has been observed. In the course of the associated long-lasting anticyclonic summer circulations, heatwaves and drought spells often coincide, leading to so-called hotter droughts. Previous hotter droughts caused a decrease in agricultural yields and an increase in tree mortality. Thus, they had a remarkable effect on carbon budgets and negative economic impacts. Consequently, a quantification of ecosystem responses to hotter droughts and a better understanding of the underlying mechanisms are crucial. In this context, the European hotter drought of the year 2018 may be considered a key event. As a first step towards the quantification of its causes and consequences, we here assess anomalies of atmospheric circulation patterns, maximum temperature, and climatic water balance as potential drivers of ecosystem responses which are quantified by remote sensing using the MODIS vegetation indices (VIs) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). To place the drought of 2018 within a climatological context, we compare its climatic features and remotely sensed ecosystem response with the extreme hot drought of 2003. The year 2018 was characterized by a climatic dipole, featuring extremely hot and dry weather conditions north of the Alps but comparably cool and moist conditions across large parts of the Mediterranean. Analysing the ecosystem response of five dominant land cover classes, we found significant positive effects of climatic water balance on ecosystem VI response. Negative drought impacts appeared to affect an area 1.5 times larger and to be significantly stronger in July 2018 compared to August 2003, i.e. at the respective peak of drought. Moreover, we found a significantly higher sensitivity of pastures and arable land to climatic water balance compared to forests in both years. We explain the stronger coupling and higher sensitivity of ecosystem response in 2018 by the prevailing climatic dipole: while the generally water-limited ecosystems of the Mediterranean experienced above-average climatic water balance, the less drought-adapted ecosystems of central and northern Europe experienced a record hot drought. In conclusion, this study quantifies the drought of 2018 as a yet unprecedented event, outlines hotspots of drought-impacted areas in 2018 which should be given particular attention in follow-up studies, and provides valuable insights into the heterogeneous responses of the dominant European ecosystems to hotter drought.
Common cause for severe droughts in South America and marine heatwaves in the South Atlantic
In 2013/14 eastern South America experienced one of its worst droughts. At the same time an unprecedented marine heatwave developed in the western South Atlantic. The drought was linked to suppression of the South Atlantic convergence zone and its associated rainfall, which led to water shortages in Brazil and impacted food supplies globally. Here we show from observations that such droughts and adjacent marine heatwaves have a common remote cause. Atmospheric blocking triggered by tropical convection in the Indian and Pacific oceans can cause persistent anticyclonic circulation that not only leads to severe drought but also generates marine heatwaves in the adjacent ocean. We show that increased shortwave radiation due to reduced cloud cover and reduced ocean heat loss from weaker winds are the main contributors to the establishment of marine heatwaves in the region. The proposed mechanism, which involves droughts, extreme air temperature over land and atmospheric blocking explains approximately 60% of the marine heatwave events in the western South Atlantic. We also identified an increase in frequency, duration, intensity and extension of marine heatwave events over the satellite period 1982–2016. Moreover, surface primary production was reduced during these events with implications for regional fisheries.
A Seesaw Variability in Tropical Cyclone Genesis between the Western North Pacific and the North Atlantic Shaped by Atlantic Multidecadal Variability
Abstract Variabilities in tropical cyclone (TC) activity are commonly interpreted in individual TC basins. We identify an antiphase decadal variation in TC genesis between the western North Pacific (WNP) and North Atlantic (NA). An inactive (active) WNP TC genesis concurs with an enhanced (suppressed) NA TC genesis. We propose that the transbasin TC connection results from a subtropical east–west “relay” teleconnection triggered by Atlantic multidecadal oscillation (AMO), involving a chain atmosphere–ocean interaction in the North Pacific. During a negative AMO phase, the tropical NA cooling suppresses local convective heating that further stimulates a descending low-level anticyclonic circulation in the tropical NA and eastern North Pacific as a Rossby wave response, inhibiting the NA TC genesis. Meanwhile, the anomalous southwesterly to the western flank of the anomalous anticyclonic circulation tends to weaken the surface evaporation and warm the SST over the subtropical eastern North Pacific (southwest–northeast-oriented zone from the tropical central Pacific to the subtropical west coast of North America). The SST warming further sustains a cyclonic circulation anomaly over the WNP by local atmosphere–ocean interaction and the Bjerknes feedback, promoting the WNP TC genesis. This transbasin linkage helps us interpret the moderate amplitude of variations in TC genesis frequency in the Northern Hemisphere.
A Three-Layer Alternating Spinning Circulation in the South China Sea
Abstract Understanding of the three-dimensional circulation in the South China Sea (SCS) is crucial for determining the transports of water masses, energy, and biogeochemical substances in the regional and adjacent larger oceans. The circulation’s kinematic and dynamic natures, however, are largely unclear. Results from a three-dimensional numerical ocean circulation model and geostrophic currents, derived from hydrographic data, reveal the existence of a unique, three-layer, cyclonic–anticyclonic–cyclonic (CAC) circulation in the upper (<750 m), middle (750–1500 m), and deep (>1500 m) layers in the SCS with differing seasonality. An inflow–outflow–inflow structure in Luzon Strait largely induces the CAC circulation, which leads to vortex stretching in the SCS basin because of a lateral planetary vorticity flux in each of the respective layers. The formation of joint effects of baroclinicity and relief (JEBAR) is an intrinsic dynamic response to the CAC circulation. The JEBAR arises from the CAC flow–topography interaction in the SCS.
Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period
Based on the 1979–2018 datasets of Climate Prediction Center (CPC) daily maximum air temperature, HadISST, and NCEP-DOE II reanalysis, the impact of Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO) on the interdecadal variability in extreme high temperature (EHT) in North China (NC) is investigated through observational analysis and National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 5.3 (CAM5.3) numerical simulations. The observational results show an interdecadal shift in NC’s EHT in approximately 1996 with a cold period from 1983 to 1996 and a warm period from 1997 to 2014. The summer PDO and AMO are both closely related to NC’s EHT, of which AMO dominates. From the cold to warm period, the combination of PDO and AMO changed from a positive PDO (+ PDO) phase and a negative AMO (− AMO) phase to a negative PDO (− PDO) phase and a positive AMO (+ AMO) phase. The shift in the antiphase combination of PDO and AMO plays an important role in the interdecadal transition of NC’s EHT in 1996. PDO could impact NC’s EHT through the Pacific-East Asia teleconnection pattern, and AMO could influence the NC’s EHT through an atmospheric wave train in the midlatitudes of the Northern Hemisphere. During the warm period (− PDO and + AMO), warmer sea surface temperature anomalies (SSTA) in the northern North Pacific (NP) and North Atlantic (NA) could cause anticyclonic circulation anomalies over these two basins. The anticyclonic circulations anomalies over the NP could enhance the anticyclone over NC through the Pacific-East Asian (PEA) teleconnection pattern. It could also cause an easterly wind from the NP to NC which would weaken the upper westerly over NC. The anticyclonic anomalies over the NA, which were parts of the wave train, could affect other sectors of the wave train, resulting in anticyclonic anomalies over NC. The anticyclonic anomalies over NC could strengthen the continental high and weaken the upper zonal westerly, resulting in favorable EHT conditions. During the cold period (+ PDO and − AMO), because of the same atmospheric response mechanism, a westerly wind from NC to NP and a wave train with reversed anomaly centers could be found, causing a cyclonic anomaly over NC that is not conducive to the EHT. A series of numerical simulations using CAM5.3 confirm the above observational results and show that the combination of + PDO and − AMO changing to − PDO and + AMO has a great impact on the interdecadal shift in EHT in NC in 1996. The simulations also show that both + AMO and − PDO can lead the EHT in NC individually, and the impact of AMO on the EHT in NC is dominant.
Subseasonal zonal variability of the western Pacific subtropical high in summer: climate impacts and underlying mechanisms
The zonal oscillation of the western Pacific subtropical high (WPSH) significantly influences the weather and climate over East Asia. This study investigates characteristics and mechanisms of the zonal variability of the WPSH on subseasonal time scales during summer by using a subseasonal WPSH (Sub-WPSH) index. Accompanied with the Sub-WPSH index, strong anticyclonic (cyclonic) anomalies are found over East Asia and coastal region south of 30°N on both 850 hPa and 500 hPa. During the positive period of the Sub-WPSH index, the WPSH extends more westward with enhanced precipitation over the Yangtze–Huaihe river basin and suppressed precipitation over the south of the Yangtze River in China. These precipitation anomalies can last for at least 1 week. While the subseasonal zonal variability of the WPSH is found to be closely associated with atmospheric teleconnections and local air- sea interaction, the mechanisms of the variability are different before and after mid-July (early and late summer). In both early and late summer, the East Asia/Pacific (EAP) wave train pattern affects the zonal shift of the WPSH by inducing a low-level anomalous anticyclonic/cyclonic circulation over the subtropical western Pacific, and this mechanism is stronger in late summer. In constrast, the influence of the Silk-Road pattern wave train is more important in the early summer. Meanwhile, in late summer, a stronger SST forcing on the atmosphere and a faster cycle of subseasonal variations of the WPSH are observed before the westward stretch of the WPSH, which could be related to the colder local SST anomalies. The westward stretch of the WPSH is accompanied by stronger anticyclonic anomalies in late summer.
Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting
Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.
Impact of North Atlantic SST and Tibetan Plateau forcing on seasonal transition of springtime South Asian monsoon circulation
The South Asian circulation and precipitation in spring shows a clear seasonal transition and interannual variation. We investigate how the North Atlantic sea surface temperature (SST) and Tibetan Plateau (TP) forcing affect this seasonal transition over South Asia on interannual timescale. Our results suggest that North Atlantic SST can affect the seasonal transition of South Asian monsoon via TP forcing in spring. The positive tripole pattern of North Atlantic SST anomaly during winter–spring can trigger a steady downstream Rossby wave train with cyclonic circulation over the southwestern TP. This forms a spring dipole mode of surface sensible heating and 10 m winds over the plateau, with a westerly (easterly) flow and positive (negative) surface sensible heating over its southern (northern) regions. A distinct land–air coupling configuration in May is then generated on the southwestern TP via such a positive TP dipole mode, which consists of anomalous positive precipitation, negative surface sensible heating and a baroclinic circulation structure with cyclonic circulation in the mid- to upper troposphere and a shallow anticyclonic circulation in the lower layer. The anticyclonic circulation is opposite to the summertime monsoon circulation. It weakens the cross-equatorial flow and water vapor transport to the South Arabian Sea and Bay of Bengal, resulting in in-situ precipitation reduction. Consequently, the seasonal transition in circulation over South Asia from winter to summer is delayed.
Strengthening impacts of spring sea surface temperature in the north tropical Atlantic on Indian Ocean dipole after the mid-1980s
It is well known that the Indian Ocean dipole (IOD) is closely related to El Niño-Southern Oscillation (ENSO). In this study, it is found that spring–summer north tropical Atlantic (NTA) sea surface temperature (SST) anomalies can contribute to the development of the IOD since the mid-1980s as well as ENSO. After the mid-1980s, an anticyclonic circulation over the subtropical northeastern Pacific could be excited by cool NTA SST anomalies in spring and summer due to a Gill-type Rossby-wave response. A low-level cyclonic circulation appears in the west Pacific in turn. The anomalous lower-level southwesterlies on the southeastern flank of the cyclonic circulation reduce the climatological wind speed, and thus, warm SST anomalies appear and extend to the central tropical Pacific via the wind-evaporation-SST (WES) feedback. As a result, Walker circulation over the Indo-Pacific region is changed, with anomalous descending in the eastern tropical Indian Ocean and ascending in the central tropical Pacific. The descending branch of anomalous Walker circulation generates surface southeasterly wind anomalies along the coast off Sumatra and lifts the thermocline in the eastern tropical Indian Ocean, which produces a positive IOD event in autumn. Such a cross-basin mechanism is supported by a coupled model experiment with warm SST perturbations over the NTA. In contrast, although cold NTA SST anomalies can induce warm SST anomalies in the eastern equatorial Pacific through interhemispheric meridional circulation before the mid-1980s, the responses in the tropical Indian Ocean are rather weak. In addition, the enhancement in the NTA-IOD relationship after the mid-1980s is suggested to result from the changes in the SST mean state under the context of global warming, which is confirmed by two coupled model experiments with different mean SST backgrounds.