نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
127,329 نتائج ل "Aquaculture"
صنف حسب:
Aquaculture economics and financing
Aquaculture Economics and Financing: Management and Analysis provides a detailed and specific set of guidelines for using economic and financial analysis in aquaculture production. By discussing key issues such as how to finance and plan new aquaculture business, how to monitor and evaluate economic performance, and how to manage capital, labor, and business risk, the book equips aquaculture professionals, researchers, and students with important information applicable to a wide range of business decisions. Chapters address each stage of developing an aquaculture business, including financing, marketing, and developing a business plan to managing cash flows and analyzing financial statements.  Each chapter includes a detailed example of practical application taken from every-day experience.  Written in straightforward terminology facilitating ready application, Aquaculture Economics and Financing: Management and Analysis is an essential tool for analyzing and improving financial performance of aquaculture operations.
Responsible Aquaculture in 2050: Valuing Local Conditions and Human Innovations will be Key to Success
As aquaculture production expands, we must avoid mistakes made during increasing intensification of agriculture. Understanding environmental impacts and measures to mitigate them is important for designing responsible aquaculture production systems. There are four realistic goals that can make future aquaculture operations more sustainable and productive: (1) improvement of management practices to create more efficient and diverse systems at every production level; (2) emphasis on local decisionmaking, human capacity development, and collective action to generate productive aquaculture systems that fit into societal constraints and demands; (3) development of risk management efforts for all systems that reduce disease problems, eliminate antibiotic and drug abuse, and prevent exotic organism introduction into local waters; and (4) creation of systems to better identify more sustainably grown aquaculture products in the market and promote them to individual consumers. By 2050, seafood will be predominantly sourced through aquaculture, including not only finfish and invertebrates but also seaweeds.
Aquaponic design plans : everything you need to know from backyard to profitable business
\"This 546-page book provides detailed directions to create and maintain different types of aquaponic systems for all sizes so you can consistently feed your family environmentally friendly sustainable healthy organic food and earn extra income. This valuable how-to resource consists of three important sections: design plans, instructions & everything you need to know about aquaponics; how to set up & operate different types of aquaponic systems of any size; how to turn aquaponics into a profitable venture\" -- From back cover.
Aquaculture: global status and trends
Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems.
The complete idiot's guide to aquaponic gardening
Comprehensive guide to building and caring for an aquaponic garden, and raising organic fish and vegetables together.
A 20-year retrospective review of global aquaculture
The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.
Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols
Microalgal cultivation in aquaculture wastewater (AWW) from recirculating aquaculture systems (RAS) is an approach for combined production of valuable algal biomass and AWW treatment. The growth, nutrient uptake, fatty acid (FA) profile, and tocopherol content of mixed algal cultures of Euglena gracilis with Selenastrum grown in AWWs from pikeperch ( Sander lucioperca ) and catfish ( Clarias anguillaris ) RAS were studied. The highest algal biomass (1.5 g L −1 ), lipid (84.9 mg L −1 ), and tocopherol (877.2 μg L −1 ) yields were achieved in sludge-amended pike perch AWW. Nutrient removal rates in experiments were 98.9–99.5 and 98.4–99.8% for NH 4 -N and PO 4 -P, and 75.4–89.2% and 84.3–95.7% for TN and TP, respectively, whereas the COD was reduced by 45.8–67.6%. Biomass EPA and DHA content met, while ARA and tocopherol content exceeded the requirements for fish feed. Algal cultivation in AWWs is a promising alternative for AWW treatment while providing a replacement for fish oil in feed.