نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
31,880 نتائج ل "Cations"
صنف حسب:
MPP + -Induced Changes in Cellular Impedance as a Measure for Organic Cation Transporter (SLC22A1-3) Activity and Inhibition
The organic cation transporters OCT1-3 ( ) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug-drug interactions (DDIs). Currently, screening of OCT inhibitors depends on uptake assays that require labeled substrates to detect transport activity. However, these uptake assays have several limitations. Hence, there is a need to develop novel assays to study OCT activity in a physiological relevant environment without the need to label the substrate. Here, a label-free impedance-based transport assay is established that detects OCT-mediated transport activity and inhibition utilizing the neurotoxin MPP . Uptake of MPP by OCTs induced concentration-dependent changes in cellular impedance that were inhibited by decynium-22, corticosterone, and Tyrosine Kinase inhibitors. OCT-mediated MPP transport activity and inhibition were quantified on both OCT1-3 overexpressing cells and HeLa cells endogenously expressing OCT3. Moreover, the method presented here is a valuable tool to identify novel inhibitors and potential DDI partners for MPP transporting solute carrier proteins (SLCs) in general.
CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.
Approaching the 5-HT sub(3) receptor heterogeneity by computational studies of the transmembrane and intracellular domains
5-hydroxytryptamine type-3 receptor (5-HT sub(3)), an important target of many neuroactive drugs, is a cation selective transmembrane pentamer whose functional stoichiometries and subunit arrangements are still debated, due to the extreme complexity of the system. The three dimensional structure of the 5-HT sub(3)R subunits has not been solved so far. Moreover, most of the available structural and functional data is related to the extracellular ligand-binding domain, whereas the transmembrane and the intracellular receptor domains are far less characterised, although they are crucial for receptor function. Here, for the first time, 3D homology models of the transmembrane and the intracellular receptor domains of all the known human 5-HT sub(3) subunits have been built and assembled into homopentameric (5-HT sub(3A)R, 5-HT sub(3B)R, 5-HT sub(3C)R, 5-HT sub(3D)R and 5-HT sub(3E)R) and heteropentameric receptors (5-HT sub(3AB), 5-HT sub(3AC), 5-HT sub(3AD) and 5-HT sub(3AE)), on the basis of the known three-dimensional structures of the nicotinic-acetylcholine receptor and of the ligand gated channel from Erwinia chrysanthemi. The comparative analyses of sequences, modelled structures, and computed electrostatic properties of the single subunits and of the assembled pentamers shed new light both on the stoichiometric composition and on the physicochemical requirements of the functional receptors. In particular, it emerges that a favourable environment for the crossing of the pore at the transmembrane and intracellular C terminus domain levels by Ca super(2+) ions is granted by the maximum presence of two B subunits in the 5-HT sub(3) pentamer.
Room temperature ferromagnetism in triple perovskite Sr sub(3)CrFeMoO sub(9)
Triple perovskite Sr sub(3)CrFeMoO sub(9) was designed and prepared in reducing atmosphere. The ceramics are single phase with homogeneous, porous-like microstructure. The valences of the interior Cr, Fe, and Mo cations are +3, +2/+3, 0/+6, whereas that of the surface cations are +3, +3, and +6, respectively. The ceramics show well-saturated magnetization-magnetic field hysteresis loop, the saturation magnetizations are 1.0 and 0.6 mu sub(B) per formula unit at 10 K and room temperature, respectively. The ferromagnetic Curie temperature is determined to be 385 K. Furthermore, semiconductor behavior in the measuring temperature range (10-300 K) and large negative magnetoresistance of -30.7 % at 10 K are observed. Our results may stimulate further works on room temperature ferromagnetism in triple perovskite.
Transient receptor potential channels as therapeutic targets
Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system. This Review focuses on recent developments in the TRP channel-related field, and highlights potential opportunities for therapeutic intervention.
Structural basis of organic cation transporter-3 inhibition
Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms.
Polyspecific organic cation transporters : Structure, function, physiological roles, and biopharmaceutical implications
The body is equipped with broad-specificity transporters for the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins and environmental waste products. This group of transporters consists of the electrogenic cation transporters OCT1-3 (SLC22A1-3), the cation and carnitine transporters OCTN1 (SLC22A4), OCTN2 (SLC22A5) and OCT6 (SLC22A16), and the proton/cation antiporters MATE1, MATE2-K and MATE2-B. The transporters show broadly overlapping sites of expression in many tissues such as small intestine, liver, kidney, heart, skeletal muscle, placenta, lung, brain, cells of the immune system, and tumors. In epithelial cells they may be located in the basolateral or luminal membranes. Transcellular cation movement in small intestine, kidney and liver is mediated by the combined action of electrogenic OCT-type uptake systems and MATE-type efflux transporters that operate as cation/proton antiporters. Recent data showed that OCT-type transporters participate in the regulation of extracellular concentrations of neurotransmitters in brain, mediate the release of acetylcholine in non-neuronal cholinergic reactions, and are critically involved in the regulation of histamine release from basophils. The recent identification of polymorphisms in human OCTs and OCTNs allows the identification of patients with an increased risk for adverse drug reactions. Transport studies with expressed OCTs will help to optimize pharmacokinetics during development of new drugs.
Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney
Creatinine is excreted into urine by tubular secretion in addition to glomerular filtration. The purpose of this study was to clarify molecular mechanisms underlying the tubular secretion of creatinine in the human kidney. Transport of [14C]creatinine by human organic ion transporters (SLC22A) was assessed by HEK293 cells expressing hOCT1, hOCT2, hOCT2-A, hOAT1, and hOAT3. Among the organic ion transporters examined, only hOCT2 stimulated creatinine uptake when expressed in HEK293 cells. Creatinine uptake by hOCT2 was dependent on the membrane potential. The Michaelis constant (Km) for creatinine transport by hOCT2 was 4.0 mM, suggesting low affinity. Various cationic drugs including cimetidine and trimethoprim, but not anionic drugs, markedly inhibited creatinine uptake by hOCT2. These results suggest that hOCT2, but not hOCT1, is responsible for the basolateral membrane transport of creatinine in the human kidney.
Structures of the calcium-activated, non-selective cation channel TRPM4
TRPM4 is a calcium-activated, phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P ) -modulated, non-selective cation channel that belongs to the family of melastatin-related transient receptor potential (TRPM) channels. Here we present the electron cryo-microscopy structures of the mouse TRPM4 channel with and without ATP. TRPM4 consists of multiple transmembrane and cytosolic domains, which assemble into a three-tiered architecture. The N-terminal nucleotide-binding domain and the C-terminal coiled-coil participate in the tetrameric assembly of the channel; ATP binds at the nucleotide-binding domain and inhibits channel activity. TRPM4 has an exceptionally wide filter but is only permeable to monovalent cations; filter residue Gln973 is essential in defining monovalent selectivity. The S1-S4 domain and the post-S6 TRP domain form the central gating apparatus that probably houses the Ca - and PtdIns(4,5)P -binding sites. These structures provide an essential starting point for elucidating the complex gating mechanisms of TRPM4 and reveal the molecular architecture of the TRPM family.
TRP channels: a TR(I)P through a world of multifunctional cation channels
The \"transient receptor potential\" (TRP) family of ion channels comprises more than 50 cation-permeable channels expressed from yeast to man. On the basis of structural homology, the TRP family can be subdivided in to seven main subfamilies: the TRPC ('Canonical') group, the TRPV ('Vanilloid') group, the TRPM ('Melastatin') group, the TRPP ('Polycystin'), the TRPML ('Mucolipin'), the TRPA ('Ankyrin') and the TRPN ('NOMP') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data concerning TRPs in a variety of cell types, tissues and species. This paper briefly reviews the TRP superfamily and the basic properties of its many members as a reader's guide in this Special Issue. Hopefully, a better understanding of TRP channel physiology will provide important insight into the relationship between TRP channel dysfunction and human diseases.