نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
37,101 نتائج ل "Histones"
صنف حسب:
Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells
Epigallocatechin gallate (EGCG), the main green tea polyphenol, exerts a wide variety of biological actions. Epigenetically, the catechin has been classified as a DNMTs inhibitor, however, its impact on histone modifications and chromatin structure is still poorly understood. The purpose of this study was to find the impact of EGCG on the histone posttranslational modifications machinery and chromatin remodeling in human endothelial cells of both microvascular (HMEC-1) and vein (HUVECs) origin. We analyzed the methylation and acetylation status of histones (Western blotting), as well as assessed the activity (fluorometric assay kit) and gene expression (qPCR) of the enzymes playing a prominent role in shaping the human epigenome. The performed analyses showed that EGCG increases histone acetylation (H3K9/14ac, H3ac), and methylation of both active (H3K4me3) and repressive (H3K9me3) chromatin marks. We also found that the catechin acts as an HDAC inhibitor in cellular and cell-free models. Additionally, we observed that EGCG affects chromatin architecture by reducing the expression of heterochromatin binding proteins: HP1α, HP1γ. Our results indicate that EGCG promotes chromatin relaxation in human endothelial cells and presents a broad epigenetic potential affecting expression and activity of epigenome modulators including HDAC5 and 7, p300, CREBP, LSD1 or KMT2A.
Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites
Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational \"anchor extension\" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.
Histone variants: emerging players in cancer biology
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression
While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.
Histone acetylation: molecular mnemonics on the chromatin
Long-lasting memories require specific gene expression programmes that are, in part, orchestrated by epigenetic mechanisms. Of the epigenetic modifications identified in cognitive processes, histone acetylation has spurred considerable interest. Whereas increments in histone acetylation have consistently been shown to favour learning and memory, a lack thereof has been causally implicated in cognitive impairments in neurodevelopmental disorders, neurodegeneration and ageing. As histone acetylation and cognitive functions can be pharmacologically restored by histone deacetylase inhibitors, this epigenetic modification might constitute a molecular memory aid on the chromatin and, by extension, a new template for therapeutic interventions against cognitive frailty.
Histone chaperone networks shaping chromatin function
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease
The effect of alterations in intestinal microbiota on microbial metabolites and on disease processes such as graft-versus-host disease (GVHD) is not known. Here we carried out an unbiased analysis to identify previously unidentified alterations in gastrointestinal microbiota-derived short-chain fatty acids (SCFAs) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amount of only one SCFA, butyrate, were observed only in the intestinal tissue. The reduced butyrate in CD326(+) intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored after local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate-producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate disease severity.
The WHHERE coactivator complex is required for retinoic acid-dependent regulation of embryonic symmetry
Bilateral symmetry is a striking feature of the vertebrate body plan organization. Vertebral precursors, called somites, provide one of the best illustrations of embryonic symmetry. Maintenance of somitogenesis symmetry requires retinoic acid (RA) and its coactivator Rere/Atrophin2. Here, using a proteomic approach we identify a protein complex, containing Wdr5, Hdac1, Hdac2 and Rere (named WHHERE), which regulates RA signaling and controls embryonic symmetry. We demonstrate that Wdr5, Hdac1, and Hdac2 are required for RA signaling in vitro and in vivo. Mouse mutants for Wdr5 and Hdac1 exhibit asymmetrical somite formation characteristic of RA-deficiency. We also identify the Rere-binding histone methyltransferase Ehmt2/G9a, as a RA coactivator controlling somite symmetry. Upon RA treatment, WHHERE and Ehmt2 become enriched at RA target genes to promote RNA polymerase II recruitment. Our work identifies a protein complex linking key epigenetic regulators acting in the molecular control of embryonic bilateral symmetry.Retinoic acid (RA) regulates the maintenance of somitogenesis symmetry. Here, the authors use a proteomic approach to identify a protein complex of Wdr5, Hdac1, Hdac2 that act together with RA and coactivator Rere/Atrophin2 and a histone methyltransferase Ehmt2 to regulate embryonic symmetry.
Histone deacetylation primes self-propagation of heterochromatin domains to promote epigenetic inheritance
Heterochromatin assembly, involving histone H3 lysine-9 methylation (H3K9me), is nucleated at specific genomic sites but can self-propagate across extended domains and, indeed, generations. Self-propagation requires Clr4/Suv39h methyltransferase recruitment by pre-existing H3K9 tri-methylation (H3K9me3) to perpetuate H3K9me deposition and is dramatically affected by chromatin context. However, the mechanism priming self-propagation of heterochromatin remains undefined. We show that robust chromatin association of fission yeast class II histone deacetylase Clr3 is necessary and sufficient to support heterochromatin propagation in different chromosomal contexts. Efficient targeting of Clr3, which suppresses histone turnover and maintains H3K9me3, enables self-propagation of an ectopic heterochromatin domain via the Clr4/Suv39h read-write mechanism requiring methylated histones. The deacetylase activity of Clr3 is necessary and, when inactivated, heterochromatin propagation can be recapitulated by removing two major histone acetyltransferases. Our results show that histone deacetylation, a conserved heterochromatin feature, preserves H3K9me3 that transmits epigenetic memory for stable propagation of silenced chromatin domains through multiple generations.
Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells
The histone demethylase LSD1 (KDM1A) demethylates mono- and di-methylated (Me2) lysine (K) 4 on histone H3. High LSD1 expression blocks differentiation and confers a poor prognosis in acute myeloid leukemia (AML). Here, treatment with the novel LSD1 antagonist SP2509 attenuated the binding of LSD1 with the corepressor CoREST, increased the permissive H3K4Me3 mark on the target gene promoters, and increased the levels of p21, p27 and CCAAT/enhancer binding protein α in cultured AML cells. In addition, SP2509 treatment or LSD1 shRNA inhibited the colony growth of AML cells. SP2509 also induced morphological features of differentiation in the cultured and primary AML blasts. SP2509 induced more apoptosis of AML cells expressing mutant NPM1 than mixed-lineage leukemia fusion oncoproteins. Treatment with SP2509 alone significantly improved the survival of immune-depleted mice following tail-vein infusion and engraftment of cultured or primary human AML cells. Co-treatment with pan-HDAC inhibitor (HDI) panobinostat (PS) and SP2509 was synergistically lethal against cultured and primary AML blasts. Compared with each agent alone, co-treatment with SP2509 and PS significantly improved the survival of the mice engrafted with the human AML cells, without exhibiting any toxicity. Collectively, these findings show that the combination of LSD1 antagonist and pan-HDI is a promising therapy warranting further testing against AML.