نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
49,659 نتائج ل "Phosphatase"
صنف حسب:
Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives
A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV–Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC 50 at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 10 6 and 1.87 × 10 6 M −1 at 310 K for 2 and 4 , respectively.
Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit
Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.
Protein tyrosine phosphatases in lymphocyte activation and autoimmunity
Lymphocyte activation must be tightly regulated to ensure sufficient immunity to pathogens and prevent autoimmunity. Protein tyrosine phosphatases (PTPs) serve critical roles in this regulation by controlling the functions of key receptors and intracellular signaling molecules in lymphocytes. In some cases, PTPs inhibit lymphocyte activation, whereas in others they promote it. Here we discuss recent progress in elucidating the roles and mechanisms of action of PTPs in lymphocyte activation. We also review the accumulating evidence that genetic alterations in PTPs are involved in human autoimmunity.
Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP)
Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for wide variety of applications. Their unique properties render them highly applicable as MRI contrast agents, in magnetic hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters such as: solubility, toxicity, stability, biodistribution etc. Therefore, progress in the field of SPIONs surface functionalization is crucial for further development of therapeutic or diagnostic agents. In this study, SPIONs were synthesized by thermal decomposition of iron (III) acetylacetonate Fe(acac) and functionalized with dihexadecyl phosphate (DHP) via phase transfer. Bioactivity of the SPION-DHP was assessed on SW1353 and TCam-2 cancer derived cell lines. The following test were conducted: cytotoxicity and proliferation assay, reactive oxygen species (ROS) assay, SPIONs uptake (via Iron Staining and ICP-MS), expression analysis of the following genes: alkaline phosphatase (ALPL); ferritin light chain (FTL); serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); transferrin receptor 1 (TFRC) via RT-qPCR. SPION-DHP nanoparticles were successfully obtained and did not reveal significant cytotoxicity in the range of tested concentrations. ROS generation was elevated, however not correlated with the concentrations. Gene expression profile was slightly altered only in SW1353 cells.
Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation
Stat3 is initially dephosphorylated in murine keratinocytes in response to UVB irradiation. Treatment with Na(3)VO(4) desensitized keratinocytes to UVB-induced apoptosis with the recovery of phosphorylated Stat3 protein levels, implying that a protein tyrosine phosphatase (PTP) is involved in this mechanism. In the current work, we report that three PTPs including TC45 (the nuclear form of TC-PTP), SHP1, and SHP2 are involved in this rapid dephosphorylation of Stat3 in keratinocytes induced by UVB irradiation. Dephosphorylation of Stat3 was increased rapidly after UVB irradiation of cultured keratinocytes. Knockdown of TC-PTP, SHP1, or SHP2 using RNAi showed that these PTPs are likely responsible for most of the rapid Stat3 dephosphorylation observed following UVB irradiation. The level of phosphorylated Stat3 was significantly higher in keratinocytes transfected with TC-PTP, SHP1, or SHP2 siRNA in the presence or absence of UVB compared with keratinocytes transfected with control siRNA. TC45 was mainly localized in the cytoplasm of keratinocytes and translocated from cytoplasm to nucleus upon UVB irradiation. Stat3 dephosphorylation was associated with nuclear translocation of TC45. Further studies revealed that knockdown of all three phosphatases, using RNAi, prevented the rapid dephosphorylation of Stat3 following UVB irradiation. In mouse epidermis, the level of phosphorylated Stat3 was initially decreased, followed by a significant increase at later time points after UVB exposure. The levels of Stat3 target genes, such as cyclin D1 and c-Myc, followed the changes in activated Stat3 in response to UVB irradiation. Collectively, these results suggest that three phosphatases, TC45, SHP1, and SHP2, are primarily responsible for UVB-mediated Stat3 dephosphorylation and may serve as part of an initial protective mechanism against UV skin carcinogenesis.
STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in ISordaria macrospora/I
The supramolecular striatin-interacting phosphatases and kinases (STRIPAK) complex is highly conserved in eukaryotes and controls diverse developmental processes in fungi. STRIPAK is genetically and physically linked to the Hippo-related septation initiation network (SIN), which signals through a chain of three kinases, including the terminal nuclear Dbf2-related (NDR) family kinase DBF2. Here, we provide evidence for the function of DBF2 during sexual development and vegetative growth of the homothallic ascomycetous model fungus Sordaria macrospora. Using mutants with a deleted dbf2 gene and complemented strains carrying different variants of dbf2, we demonstrate that dbf2 is essential for fruiting body formation, as well as septum formation of vegetative hyphae. Furthermore, we constructed dbf2 mutants carrying phospho-mimetic and phospho-deficient codons for two conserved phosphorylation sites. Growth tests of the phosphorylation mutants showed that coordinated phosphorylation is crucial for controlling vegetative growth rates and maintaining proper septum distances. Finally, we investigated the function of DBF2 by overexpressing the dbf2 gene. The corresponding transformants showed disturbed cytokinesis during ascospore formation. Thus, regulated phosphorylation of DBF2 and precise expression of the dbf2 gene are essential for accurate septation in vegetative hyphae and coordinated cell division during septation and sexual spore formation.
Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases
The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.