نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • نوع المحتوى
      نوع المحتوى
      امسح الكل
      نوع المحتوى
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • الناشر
    • المصدر
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
45,906 نتائج ل "Replication"
صنف حسب:
Stepping in the same river twice : replication in biological research
An international team of biologists, philosophers, and historians of science explores the critically important process of replication in biological and biomedical research. Without replication, the trustworthiness of scientific research remains in doubt. Although replication is increasingly recognized as a central problem in many scientific disciplines, repeating the same scientific observations of experiments or reproducing the same set of analyses from existing data is remarkably difficult. In this important volume, an international team of biologists, philosophers, and historians of science addresses challenges and solutions for valid replication of research in medicine, ecology, natural history, agriculture, physiology, and computer science. After the introduction to important concepts and historical background, the book offers paired chapters that provide theoretical overviews followed by detailed case studies. These studies range widely in topics, from infectious-diseases and environmental monitoring to museum collections, meta-analysis, bioinformatics, and more. The closing chapters explicate and quantify problems in the case studies, and the volume concludes with important recommendations for best practices. -- Provided by publisher.
The plasticity of DNA replication forks in response to clinically relevant genotoxic stress
Complete and accurate DNA replication requires the progression of replication forks through DNA damage, actively transcribed regions, structured DNA and compact chromatin. Recent studies have revealed a remarkable plasticity of the replication process in dealing with these obstacles, which includes modulation of replication origin firing, of the architecture of replication forks, and of the functional organization of the replication machinery in response to replication stress. However, these specialized mechanisms also expose cells to potentially dangerous transactions while replicating DNA. In this Review, we discuss how replication forks are actively stalled, remodelled, processed, protected and restarted in response to specific types of stress. We also discuss adaptations of the replication machinery and the role of chromatin modifications during these transactions. Finally, we discuss interesting recent data on the relevance of replication fork plasticity to human health, covering its role in tumorigenesis, its crosstalk with innate immunity responses and its potential as an effective cancer therapy target.
RPA and RAD51: fork reversal, fork protection, and genome stability
Replication protein A (RPA) and RAD51 are DNA-binding proteins that help maintain genome stability during DNA replication. These proteins regulate nucleases, helicases, DNA translocases, and signaling proteins to control replication, repair, recombination, and the DNA damage response. Their different DNA-binding mechanisms, enzymatic activities, and binding partners provide unique functionalities that cooperate to ensure that the appropriate activities are deployed at the right time to overcome replication challenges. Here we review and discuss the latest discoveries of the mechanisms by which these proteins work to preserve genome stability, with a focus on their actions in fork reversal and fork protection.
Mechanisms of DNA replication termination
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Characterization of Unidirectional Replication Forks in the Mouse Genome
Origins of replication are genomic regions in which replication initiates in a bidirectional manner. Recently, a new methodology (origin-derived single-stranded DNA sequencing; ori-SSDS) was developed that allows the detection of replication initiation in a strand-specific manner. Reanalysis of the strand-specific data revealed that 18-33% of the peaks are non-symmetrical, suggesting a single direction of replication. Analysis of replication fork direction data revealed that these are origins of replication in which the replication is paused in one of the directions, probably due to the existence of a replication fork barrier. Analysis of the unidirectional origins revealed a preference of G4 quadruplexes for the blocked leading strand. Taken together, our analysis identified hundreds of genomic locations in which the replication initiates only in one direction, and suggests that G4 quadruplexes may serve as replication fork barriers in such places.
Transcription shapes DNA replication initiation and termination in human cells
Although DNA replication is a fundamental aspect of biology, it is not known what determines where DNA replication starts and stops in the human genome. We directly identified and quantitatively compared sites of replication initiation and termination in untransformed human cells. We found that replication preferentially initiates at the transcription start site of genes occupied by high levels of RNA polymerase II, and terminates at their polyadenylation sites, thereby ensuring global co-directionality of transcription and replication, particularly at gene 5' ends. During replication stress, replication initiation is stimulated downstream of genes and termination is redistributed to gene bodies; this globally reorients replication relative to transcription around gene 3' ends. These data suggest that replication initiation and termination are coupled to transcription in human cells, and propose a model for the impact of replication stress on genome integrity.
Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress
Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.
High speed of fork progression induces DNA replication stress and genomic instability
Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle . Replication stress induces fork stalling and fuels genome instability . The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer . Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse . Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production
Generally, bacteria have a circular genome with a single replication origin for each replicon, whereas archaea and eukaryotes can have multiple replication origins in a single chromosome. In Escherichia coli, bidirectional DNA replication is initiated at the origin of replication (oriC) and arrested by the 10 termination sites (terA-J). We constructed E. coli derivatives with additional or ectopic replication origins, which demonstrate the relationship between DNA replication and cell physiology. The cultures of E. coli derivatives with multiple replication origins contained an increased fraction of replicating chromosomes and the cells varied in size. Without the original oriC, E. coli derivatives with double ectopic replication origins manifested impaired growth irrespective of growth conditions and enhanced cell size, and exhibited excessive and asynchronous replication initiation. The generation time of an E. coli strain with three replication origins decreased in a minimal medium supplemented with glucose as the sole carbon source. As well as cell growth, the introduction of additional replication origins promoted increased biomass production. Balanced cell growth and physiological stability of E. coli under rapid growth condition are affected by changes in the position and number of replication origins. Additionally, we show that, for the first time to our knowledge, the introduction of replication initiation sites to the chromosome promotes cell growth and increases protein production.
Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general.