نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
1,949 نتائج ل "Rosaceae"
صنف حسب:
Responses of 'Conference' Pear to Deficit Irrigation: Water Relations, Leaf Discrimination Against super(13)CO sub(2), Tree Starch Content, Growth, and Recovery After Rewatering
Responses to deficit irrigation (DI) throughout the fruit-growing season were studied in 'Conference' pear grafted onto quince M-A rootstock and grown in large containers. The treatments were (1) full irrigation (FI), (2) DI during Stage I of fruit growth (DI-Stage I), and (3) DI during Stage II of fruit growth (DI-Stage II). Four whole trees were sampled before Stage I and from all treatments at the end of Stage I, end of Stage II (fruit harvest), and before leaf fall. There was less discrimination against super(13)CO sub(2) in DI leaves, indicative of reduced photosynthetic capacity. DI treated trees had lower starch content in branches and trunks but root starch concentration was the same between DI- and FI-treated trees. Compared to FI-treated trees, leaf, shoot, branch, and trunk dry biomass was reduced by 34, 50, 37, and 32 %, respectively, in DI-Stage I and by 45, 73, 37, and 22 % in DI-Stage II. Root growth was not affected by DI. Trees had limited capacity for storing starch in roots. Recovery of the aboveground starch concentration for DI treatments occurred within 1 month after rewatering but total starch content never recovered.
Comparative genomics analysis provides insights into evolution and stress responses of Lhcb genes in Rosaceae fruit crops
Abstract Background Light-harvesting chlorophyll a/b binding proteins ( Lhcb ) play crucial roles in plant growth, development, and the response to abiotic stress in higher plants. Previous studies have reported that Lhcb genes were involved in the phytochrome regulation and responded to different light and temperature conditions in Poaceae (such as maize). However, the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species. Results In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca , 20 in Prunus armeniaca , 33 in Malus domestica ‘Gala’ , 21 in Prunus persica , 33 in Rosa chinensis , 29 in Pyrus bretschneideri , 18 in Rubus occidentalis , 20 in Prunus mume , and 15 in Prunus salicina . Phylogenetic analysis revealed that the Lhcb gene family could be classified into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks in Ks values (0.1–0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis -acting elements in the 2000 bp promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demonstrated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature stress in Rosaceae species. Conclusions These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight the critical role of Lhcb in pear’s response to low temperatures. The results obtained provide valuable insights for further investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further fruit tree breeding and improvement to cope with the current climate changes.
Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging
Cerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress. However, the limited availability of Cerasus genomic resources has considerably restricted the exploration of its waterlogging response mechanism. To understand its reaction to short-term waterlogging, we analyzed the physiology and transcriptomes of C. sachalinensis roots in response to different waterlogging durations. In this study, 12,487 differentially expressed genes (DEGs) were identified from Cerasus sachalinensis roots under different waterlogging durations. Carbon metabolism and energy maintenance formed the first coping mechanism stage of C. sachalinensis in response to low oxygen conditions. Root energy processes, including root respiration and activities of the fermentation enzymes alcohol dehydrogenase, pyruvate decarboxylase, and lactate dehydrogenase, showed unique changes after 0 h, 3 h, 6 h, and 24 h of waterlogging exposure. Ribonucleic acid sequencing was used to analyze transcriptome changes in C. sachalinensis roots treated with 3 h, 6 h, and 24 h of waterlogging stress. After de novo assembly, 597,474 unigenes were recognized, of which 355,350 (59.47%) were annotated. To identify the most important pathways represented by DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to compare these genes. The first stage of root reaction to waterlogging stress was activation of carbohydrate metabolism to produce more glucose and maintain energy levels. At 3 h, the glycolytic and fermentation pathways were activated to maintain adenosine triphosphate production. At 24 h, pathways involved in the translation of proteins were activated to further assist the plant in tolerating waterlogging stress. These findings will facilitate a further understanding of the potential mechanisms of plant responses to waterlogging at physiological and transcriptome levels. Carbon metabolism and energy maintenance formed the first coping mechanism C. sachalinensis in response to low oxygen conditions, and they may be responsible for its short-term waterlogging response. Our study not only provides the assessment of genomic resources of Cerasus but also paves the way for probing the metabolic and molecular mechanisms underlying the short-term waterlogging response in C. sachalinensis.
The genome of Prunus mume
Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.
i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation
DNA N 6 -methyladenine (6 mA) is one of the most vital epigenetic modifications and involved in controlling the various gene expression levels. With the avalanche of DNA sequences generated in numerous databases, the accurate identification of 6 mA plays an essential role for understanding molecular mechanisms. Because the experimental approaches are time-consuming and costly, it is desirable to develop a computation model for rapidly and accurately identifying 6 mA. To the best of our knowledge, we first proposed a computational model named i6mA-Fuse to predict 6 mA sites from the Rosaceae genomes, especially in Rosa chinensis and Fragaria vesca . We implemented the five encoding schemes, i.e., mononucleotide binary, dinucleotide binary, k-space spectral nucleotide, k-mer, and electron–ion interaction pseudo potential compositions, to build the five, single-encoding random forest (RF) models. The i6mA-Fuse uses a linear regression model to combine the predicted probability scores of the five, single encoding-based RF models. The resultant species-specific i6mA-Fuse achieved remarkably high performances with AUCs of 0.982 and 0.978 and with MCCs of 0.869 and 0.858 on the independent datasets of Rosa chinensis and Fragaria vesca , respectively. In the F. vesca -specific i6mA-Fuse, the MBE and EIIP contributed to 75% and 25% of the total prediction; in the R. chinensis -specific i6mA-Fuse, Kmer, MBE, and EIIP contribute to 15%, 65%, and 20% of the total prediction. To assist high-throughput prediction for DNA 6 mA identification, the i6mA-Fuse is publicly accessible at https://kurata14.bio.kyutech.ac.jp/i6mA-Fuse/ . Key message The existing prediction models are not suitable to identify 6mA in the Rosaceae genome because the existing algorithms are species-specific. Thus, a novel predictor is desired to be established to identify 6mA sites in the Rosaceae genome. To the best of our knowledge, we first propose a computation model named i6mA-Fuse (Identification of N6-MethylAdenine sites by Fusing multiple feature representation) to predict 6mA sites from the Rosaceae genomes, especially in Rosa chinensis and Fragaria vesca .
Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Identification of Shaker K⁺ channel family members in Rosaceae and a functional exploration of PbrKAT1
Potassium (K⁺) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K⁺ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K⁺ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K⁺ channel gene family members in Rosaceae. We cloned and characterized a Shaker K⁺ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K⁺ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K⁺ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K⁺ channel genes. β-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K⁺ channel gene family in plants.
Strategies for transcriptome analysis in nonmodel plants
Even with recent reductions in sequencing costs, most plants lack the genomic resources required for successful short-read transcriptome analyses as performed routinely in model species. Several approaches for the analysis of short-read transcriptome data are reviewed for nonmodel species for which the genome of a close relative is used as the reference genome. Two approaches using a data set from Phytophthora-chaWenged Rubus idaeus (red raspberry) are compared. Over 70000000 86-nt Illumina reads derived from R. idaeus roots were aligned to the Fragaria vesca genome using publicly available informatics tools (Bowtie/TopHat and Cufflinks). Alignment identified 16956 putatively expressed genes. De novo assembly was performed with the same data set and a publicly available transcriptome assembler (Trinity). A BLAST search with a maximum e-value threshold of 1.0x10⁻³ revealed that over 36000 transcripts had matches to plants and over 500 to Phytophthora. Gene expression estimates from alignment to F vesca and de novo assembly were compared for raspberry (Pearson's correlation=0.730). Together, alignment to the genome of a close relative and de novo assembly constitute a powerful method of transcriptome analysis in nonmodel organisms. Alignment to the genome of a close relative provides a framework for differential expression testing if alignments are made to the predefined gene-space of a close relative and de novo assembly provides a more robust method of identifying unique sequences and sequences from other organisms in a system. These methods are considered experimental in nonmodel systems, but can be used to generate resources and specific testable hypotheses.
Bioactive Compounds and Antioxidant Activity in Different Types of Berries
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Descriptive study of plant resources in the context of the ethnomedicinal relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan
This paper presents the first quantitative ethnobotanical study of the flora in Toli Peer National Park of Azad Jammu and Kashmir, Pakistan. Being a remote area, there is a strong dependence by local people on ethnobotanical practices. Thus, we attempted to record the folk uses of the native plants of the area with a view to acknowledging and documenting the ethnobotanical knowledge. The aims of the study were to compile an inventory of the medicinal plants in the study area and to record the methods by which herbal drugs were prepared and administered. Information on the therapeutic properties of medicinal plants was collected from 64 local inhabitants and herbalists using open ended and semi-structured questionnaires over the period Aug 2013-Jul 2014. The data were recorded into a synoptic table comprising an ethnobotanical inventory of plants, the parts used, therapeutic indications and modes of application or administration. Different ethnobotanical indices i.e. relative frequencies of citation (RFC), relative importance (RI), use value (UV) and informant consensus factor (Fic), were calculated for each of the recorded medicinal plants. In addition, a correlation analysis was performed using SPSS ver. 16 to check the level of association between use value and relative frequency of citation. A total of 121 species of medicinal plants belonging to 57 families and 98 genera were recorded. The study area was dominated by herbaceous species (48%) with leaves (41%) as the most exploited plant part. The Lamiaceae and Rosaceae (9% each) were the dominant families in the study area. Among different methods of preparation, the most frequently used method was decoction (26 species) of different plant parts followed by use as juice and powder (24 species each), paste (22 species), chewing (16 species), extract (11 species), infusion (10 species) and poultice (8 species). The maximum Informant consensus factor (Fic) value was for gastro-intestinal, parasitic and hepatobiliary complaints (0.90). Berberis lycium Ajuga bracteosa, Prunella vulgaris, Adiantum capillus-veneris, Desmodium polycarpum, Pinus roxburgii, Albizia lebbeck, Cedrella serrata, Rosa brunonii, Punica granatum, Jasminum mesnyi and Zanthoxylum armatum were the most valuable plants with the highest UV, RFC and relative importance values. The Pearson correlation coefficient between UV and RFC (0.881) reflects a significant positive correlation between the use value and relative frequency of citation. The coefficient of determination indicated that 77% of the variability in UV could be explained in terms of RFC. Systematic documentation of the medicinal plants in the Toli Peer National Park shows that the area is rich in plants with ethnomedicinal value and that the inhabitants of the area have significant knowledge about the use of such plants with herbal drugs commonly used to cure infirmities. The results of this study indicate that carrying out subsequent pharmacological and phytochemical investigations in this part of Pakistan could lead to new drug discoveries.