Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
927,296 result(s) for "Species"
Sort by:
Species invasions and extinction: The future of native biodiversity on islands
Predation by exotic species has caused the extinction of many native animal species on islands, whereas competition from exotic plants has caused few native plant extinctions. Exotic plant addition to islands is highly nonrandom, with an almost perfect 1 to 1 match between the number of naturalized and native plant species on oceanic islands. Here, we evaluate several alternative implications of these findings. Does the consistency of increase in plant richness across islands imply that a saturation point in species richness has been reached? If not, should we expect total plant richness to continue to increase as new species are added? Finally, is the rarity of native plant extinctions to date a misleading measure of the impact of past invasions, one that hides an extinction debt that will be paid in the future? By analyzing historical records, we show that the number of naturalized plant species has increased linearly over time on many individual islands. Further, the mean ratio of naturalized to native plant species across islands has changed steadily for nearly two centuries. These patterns suggest that many more species will become naturalized on islands in the future. We also discuss how dynamics of invasion bear upon alternative saturation scenarios and the implications these scenarios have for the future retention or extinction of native plant species. Finally, we identify invasion-motivated research gaps (propagule pressure, time-lags to extinction, abundance shifts, and loss of area) that can aid in forecasting extinction and in developing a more comprehensive theory of species extinctions.
Native diversity buffers against severity of non-native tree invasions
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species 1 , 2 . Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies 3 , 4 . Here, leveraging global tree databases 5 – 7 , we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions. Analysis combining multiple global tree databases reveals that whether a location is invaded by non-native tree species depends on anthropogenic factors, but the severity of the invasion depends on the native species diversity.
Invasive Plants Have Scale-Dependent Effects on Diversity by Altering Species-Area Relationships
Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.
Endangered species
Investigates what would happen if we decide to do nothing about protecting endangered species.
A synthesis of plant invasion effects on biodiversity across spatial scales
Premise of the study: Invasive plant species are typically thought to pose a large threat to native biodiversity, and local-scale studies typically confirm this view. However, plant invaders rarely cause regional extirpations or global extinctions, causing some to suggest that invasive species' influence on native biodiversity may not be so dire. We aim to synthesize the seemingly conflicting literature in plant invasion biology by evaluating the effects of invasive plant species across spatial scales. Methods: We first conducted a meta-analysis on the effects of invasive plants on the species richness of invaded communities across a range of spatial extents. We then discuss studies that consider the role of invasive plants on regional spatial scales for which such meta-analyses are not possible. Finally, we develop a conceptual framework to synthesize the influence of invasive species across spatial scales by explicitly recognizing how invasive species alter species-occupancy distributions. Key results: We found a negative relationship between the spatial extent of the study and the effect size of invasive plants on species richness. Our simulation models suggest that this result can occur if invaders, either proportionately or disproportionately, reduce the occupancy of common species to a greater degree than rare species. Conclusions: Future studies should consider the influence of invaders on the abundance and occupancy-level changes in native species to inform how invasive plants will influence native species richness relationships across spatial scales. This approach will allow greater predictive ability for forecasting changes in biodiversity in the face of anthropogenic biological invasions and will inform invasive species management and restoration.
Helping endangered animals
Examines endangered species, how human activities have contributed to shrinking numbers, and what is being done to protect animals for the future.
Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference
Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.